PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of nozzle hole diameter on the first and second law balance in a DI Diesel engine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the present work, influence of nozzle holes diameter is studied on the first and second law balance in DI Diesel engine. To this aim, the first law analysis is done by using the results of a three dimensional CFD model. The results show a good agreement with the experimental data. Also for the second law analysis, a developed in house computational code is applied. Behaviors of the results have a good accordance with the literature. The results show that increase in nozzle holes diameter increases both indicated work and heat loss to walls. Also about the second law terms, results declare that increase in nozzle holes diameter leads to increase in indicated work availability, heat loss availability, and entropy generation per cycle and decrease in combustion irreversibility and exhaust gas availability.
Rocznik
Strony
20--33
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering University of Applied Science and Technology Branch of Neyriz, Iran
autor
  • Department of Mechanical Engineering Khameneh Branch, Islamic Azad University, Khameneh, Iran
Bibliografia
  • [1] E. G. Giakoumis, Cylinder wall insulation effects on the first and second law balances of a turbocharged diesel engine operating under transient load conditions, Energy Conversion and Management 48 (11) (2007) 2925–2933.
  • [2] J. B. Heywood, Internal combustion engine fundamentals, McGraw-Hill, New York, 1988.
  • [3] R. S. Benson, N. D. Whitehouse, Internal combustion engines, Pergamon Press, Oxford, 1979.
  • [4] J. H. Horlock, D. E. Winterbone, The thermodynamics and gas dynamics of internal combustion engines, Vol. II, Clarendon Press, Oxford, 1986.
  • [5] E. F. Obert, R. A. Gaggioli, Thermodynamics, McGraw-Hill, New York, 1963.
  • [6] M. J. Moran, Availability analysis: a guide to efficient energy use, Prentice Hall, New Jersey, 1982.
  • [7] C. D. Rakopoulos, E. G. Giakoumis, Second-law analyses applied to internal combustion engines operation, Progress in Energy and Combustion Science 32 (1) (2006) 2–47.
  • [8] W. Traupel, Reciprocating engine and turbine in internal combustion engineering, in: Proceedings of the International Congress of Combustion Engines (CIMAC), Zurich, Switzerland, 1957.
  • [9] D. J. Patterson, G. Van Wylen, A digital computer simulation for spark-ignited engine cycles, SAE Technical Paper 630076 (1963). doi:10.4271/630076.
  • [10] P. F. Flynn, K. L. Hoag, M. M. Kamel, R. J. Primus, A New Perspective on Diesel Engine Evaluation Based on Second Law Analysis, SAE Technical Paper 840032 (1984). doi:10.4271/840032.
  • [11] J. A. Caton, A Review of Investigations Using the Second Law of Thermodynamics to Study Internal-Combustion Engines, SAE Technical Paper 2000-01-1081 (2000). doi:10.4271/2000-01-1081.
  • [12] C. Baumgarten, Mixture formation in internal combustion engine, Springer Berlin Heidelberg, 2006. doi:10.1007/3-540-30836-9.
  • [13] A. Abassi, S. Khalilarya, S. Jafarmadar, The influence of injection system characteristics on the first- and secondlaw terms in high-speed di diesel engines with swirl combustion chamber, International Journal of Exergy 7 (4) (2010) 482–504.
  • [14] A. Numata, Y. Nagae, Increase of thermal efficiency and reduction of nox emissions in di diesel engines, in: Mitsubishi Heavy Industries, Ltd. Technical Review, Vol. 38, 2001.
  • [15] B.-S. Kim, W. H. Yoon, S. H. Ryu, J. S. Ha, Effect of the Injector Nozzle Hole Diameter and Number on the Combustion Performance in Medium-speed Diesel Marine Engnes, SAE Technical Paper 2005-01-3853 (2005). doi:10.4271/2005-01-3853.
  • [16] G. Jian, M. Yuhei, N. Keiya, Effect of injection pressure and nozzle hole diameter on mixture properties of d.i. diesel spray, in: Proceedings. JSAE Annual Congress 2006, no. 76-06, 2006, pp. 19–24.
  • [17] N. Tamaki, A. Kato, K. Imano, K. Kato, Improvement of atomization characteristics of spray by multi-hole nozzle forpressure atomized type injector, in: ILASS – Europe 2010, 23rd Annual Conference on Liquid Atomization and Spray Systems, Brno, Czech Republic, 2010.
  • [18] A. A. Amsden, P. J. O’Rourke, T. D. Butler, KIVA ll: A Computer Program for Chemically Reactive Flows with Sprays, Los Alamos National Laboratory, LA-11560-MS (1989).
  • [19] Z. Han, R. D. Reitz, Turbulence modeling of internal combustion engines using rng k-e models, Combustion Science and Technology 106 (4–6) (1995) 267–295.
  • [20] B. F. Magnussen, B. H. Hjertager, On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion, Symposium (International) on Combustion 16 (1) (1977) 719–729.
  • [21] R. D. Reitz, Modeling atomization processes in high pressure vaporizing sprays, Atomisation and Spray Technology 3 (4) (1987) 309–337.
  • [22] J. K. Dukowicz, Quasi-steady droplet phase change in the presence of convection, Tech. Rep. LA-7997-MS, TRN: 79-021574, Los Alamos Scientific Lab, NM (USA) (August 1 1979).
  • [23] L. Schiller, A. Z. Naumann, Drag coefficient correlation vdi, Zeitschrift 77 (1933) 318–320.
  • [24] W. E. Ranz, W. R. Marshall, Evaporation from drops, Chemical Engineering Progress 48 (1952) 141–146, 173–180.
  • [25] A. K. Bose, C. T. Pei, Evaporation rates in spray drying, Canadian Journal of Chemistry 42 (1964) 252.
  • [26] A. Bejan, G. Tsatsaronis, M. Moran, Thermal design and optimization, Wiley, New York, 1996.
  • [27] V. S. Stepanov, Chemical energies and exergies of fuels, Energy 20 (3) (1995) 235–242.
  • [28] R. J. Primus, P. F. Flynn, The assessment of losses in diesel engines using second law analysis, in: ASME WAMeeting Anaheim CA. Proceedings of the AES, 1986, pp. 61–68.
  • [29] A. C. Alkidas, The application of availability and energy balances to a diesel engine, Journal of Engineering for Gas Turbines and Power-transactions of The Asme 110 (3) (1988) 462–469.
  • [30] C. D. Rakopoulos, E. C. Andritsakis, Di and idi diesel engines combustion irreversibility analysis, in: ASME-PUBLICATIONS- HTD, Thermodynamics and the design, analysis and improvement of energy systems 9th Symposium; Winter annual meeting, Thermodynamics and the design, analysis and improvement of energy systems, Vol. 266, 1993, pp. 17–32.
  • [31] J. G. Hawley, F. J.Wallace, S. A. Khalil, A fully analytical treatment of heat release in diesel engines, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 217 (8) (2003) 701–717.
  • [32] C. D. Rakopoulos, E. G. Giakoumis, Speed and load effects on the availability balance and irreversibilities production in a multi-cylinder turbocharged diesel engine, Applied Thermal Engineering 17 (3) (1997) 299–313.
  • [33] W. R. Dunbar, N. Lior, Sources of combustion irreversibility, Combustion Science and Technology 103 (1–6) (1994) 41–61.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2ddcd08-43ec-48fc-b374-d9a42f36133b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.