PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adenine adsorption in different pH acetate buffer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Physicochemistry of interfaces - instrumental methods (22-26.08.2021 ; Lublin, Poland)
Języki publikacji
EN
Abstrakty
EN
The research results facilitate the description of adenine adsorption on the mercury electrode with reference to the pH of the supporting electrolyte which was the acetate buffer with pH of 3, 4, 5 and 6. The thermodynamic analysis indicates that the curves of the differential capacity of the studied systems with adenine do not overlap with the curves for the supporting electrolyte – the acetate buffer. This indicates the occurrence of adsorption of the studied compound on the mercury electrode within the whole range of applied concentrations in the case of every tested pH value of the acetate buffer. Adsorption energy and interaction constants were determined using the Frumkin isotherm and the viral isotherm. It was demonstrated that a adenine molecule is adsorbed on the mercury electrode in a buffer with pH 4, 5 and 6 through the negative pole, whereas in a buffer with pH 3 through the positive pole. Physical adsorption was observed in the studied systems. This is indicated by the occurrence of a typical maximum on the curve of the relation the relative surface excess amounts and the potential of the electrode; crossed curves of the following relation surface charge of the electrode from its potential (surface charge of the electrode from its potential σ = f(E)) at one point and, thus, the possibility of determining electrical parameters characterizing maximum adsorption as well as the absence of linearity of the function free energy of adsorption as a function of electrode potential ∆G0 = f(E).
Rocznik
Strony
art. no. 144446
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
  • Maria Curie-Sklodowska University, Chemistry Department, Pl. Marie Curie-Sklodowska 3, 20-031 Lublin
Bibliografia
  • BAREK, J., 2013. Possibilities and Limitations of Mercury and Mercury-based Electrodes in Practical Electroanalysis of Biologically Active Organic Compounds. Portugaliae Electrochimica Acta. 31(6), 291-295.
  • GALUS, Z., 1979. Elektroanalityczne metody wyznaczania stalych fizykochemicznych PWN Warszawa, Poland.
  • GUGAŁA-FEKNER, D., 2016. Adsorption of guanine at the interface electrode-acetic buffer solution and its influence on zinc cation Electroreduction. Monatsh Chem. 147(11), 1855-1862.
  • GUGAŁA-FEKNER, D., 2016. Adsorption of N-decanoyl-N-methylglucamine at the interface electrode-NaClO4solution. comparison of adsorption properties of different surfactants. Croat. Chem. Acta. 89(1), 25-30.
  • GUGAŁA-FEKNER, D., 2018. Adsorption of adenine on mercury electrode in acetate buffer at pH 5 and pH 6 and its effect on electroreduction of zinc ions. Monatsh Chem. 149, 1357-1365.
  • GUGAŁA-FEKNER, D., 2018. The effect of adenine adsorption on Zn (II) electroreduction in acetate buffer. Acta Chim. Slov. 65, 119-126.
  • KALISZCZAK, W., NOSAL-WIERCIŃSKA, A., 2020. Change in the dynamics of the catalytic action of azathioprine on the electroreduction process of Bi(III) ions under the influence of surfactants in the context of controlled drug release. J.Electroanal. Chem. 862, 114033-114041.
  • KALVODA, R., 2007 Chem.Anal. 52, 869-873.
  • FONTANESI, C., 1994. Entropy change in the two-dimensional phase transition of adenine adsorbed at the Hg electrode/aqueous solution interface. J. Chem. Soc. Faraday Trans. 90, 2925-2930.
  • FRUMKIN, A.C., 1926. Über die Beeinflussung der Adsorption von Neutralmolekülen durch ein elektrisches Feld. Z. Phys.35, 792-802.
  • NIESZPOREK, J., 2013. The mechanism and kinetics of Zn2+ electroreduction in the presence of octyltrimethylammonium bromide. J. Electroanal. Chem. 706, 108-116.
  • NIESZPOREK, J., 2020. Nicotinamide as a Catalyst for Zn2+ Electroreduction in Acetate Buffe. Electrocatalysis. 11, 422-431.
  • NIESZPOREK, J., GUGAŁA-FEKNER, D., NIESZPOREK, K., 2019. The Effect of Supporting Electrolyte Concentration on Zinc Electrodeposition Kinetics from Methimazole Solutions. Electroanalysis. 31, 1141-1149.
  • NIESZPOREK, J., NIESZPOREK, K., 2018. Experimental and Theoretical Studies of Anionic Surfactants Activity at Metal/Solution Interface: The Influence of Temperature and Hydrocarbon Chain Length of Surfactants on the Zinc Ions Electroreduction Rate. Bulletin of the Chemical Society of Japan. 91, 201-210.
  • NOSAL-WIERCINSKA, A., KALISZCZAK, W., MARTYNA, M., GOLEBIOWSKA, B., WISNIEWSKA, M., 2020. Temperature influence on the electrode process in the presence of 6-thioguanine and surfactants. Physicochemical Problems of Mineral Processing. 56(6), 14-21.
  • NOSAL-WIERCIŃSKA, A., MARTYNA. M., MIRCESKI. V., SKRZYPEK. S., 2021. Electroreduction of bi(Iii) ions at a cyclically renewable liquid silver amalgam film electrode in the presence of methionine, Molecules. 26, 3972-3986.
  • PRADO, C., NAVARRO, I., RUEDA, M., FRANCOIS, H., BUESS-HERMAN, C., 2001. Kinetics of condensation of adenine at the mercury ∣ electrolyte interface. J.Electroanal.Chem. 500, 353-364.
  • PRIETO, F., ALVAREZ-MALMAGRO, J., RUEDA, M., 2017. Electrochemical Impedance Spectroscopy study of the adsorption of adenine on Au(111) electrodes as a function of the pH. J. Electroanal. Chem. 793, 209-217.
  • RABIK, C., A., DOLAN, M., E., 2007. Molecular mechanisms of resistance and toxicity associated with platinating agents.Cancer Treat. Rev. 33, 9-23.
  • SIEŃKO, D., GUGAŁA-FEKNER, D., NIESZPOREK, J., FEKNER, Z., SABA, J., 2009. Adsorption of tetramethylthiourea in concentrated NaClO4 solutions. Collect. Czech. Chem. Commun. 74, 1309-1321.
  • SLIWINSKA-HILL, U., SZUMELDA, M., 2016. Biological aspects of anticancer therapy with platinum drugs: interactions with cytochrome c. Journal of Oncology. 66 (2), 136-150.
  • STENZEL-BEMBENEK, A., SAGAN, D., GUZ, M., STEPULAK, A., 2014. Single nucleotide polymorphisms in lung cancer patients and cisplatin treatment. Postepy Hig Med Dosw. 68, 136-1373.
  • SUK, R., GURUBHAGAVATULA, S., PARK, S., ZHOU, W., SU, L., LYNCH, T., J., WAIN, J., C., NEUBERG, D., LIU, G., CHRISTIANI, D., C., 2005. Polymorphisms in ERCC1 and Grade 3 or 4 Toxicity in Non–Small Cell Lung Cancer Patients. Clin. Cancer Res. 11, 1534-1538.
  • VYSKOCIL, V., BAREK, J., 2009. Mercury Electrodes–Possibilities and Limitations in Environmental Electroanalysis. Critical Reviews in Analytical Chemistry. 39, 173-188.
  • ŻAK, I., BALCERZYK, A., 2001. Chemia medyczna. Śląska Akademia Medyczna, 307-324
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2dcfdef-0af5-46e3-9916-f733d899c018
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.