PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hydrological Modelling in the Ouergha Watershed by Soil and Water Analysis Tool

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Streamflow modelling is crucial for developing successful long-term management, soil conservation planning, and water resource management strategies. The current work attempts to develop a robust hydrological model that simulates streamflow with the slightest uncertainty in the calibration parameters. A physical-based and semidistributed hydrological SWAT model was employed to assess the hydrological simulation of the Ouergha watershed. The monthly simulation of the SWAT model achieved in the time frame from 1990 to 2013 has been split into warm-up (1990–1996), calibration (1997–2005), and validation (2006-2013). The SUFI-2 algorithm’s preliminary sensitivity and uncertainty analysis was done to calibrate the model using 11 hydrologic parameters. The model’s performance and robustness findings are promising. To evaluate the model, the coefficient of determination (R2), Nash-Sutcliffe efficiency (NSE), and percent of bias (PBIAS) were utilized. The value of R2, NSE, and PBIAS ranged from 0.45–0.77, 0.6–0.89, and +12.72 to +21.89% during calibration and 0.51–0.85, 0.64–0.88, and +8.82 to +22.19% during validation period, respectively. A high correlation between the observed and simulated streamflow was recorded during the calibration and validation periods. More than 68% of the observation data are encompassed by the 95PPU across both the calibration and validation intervals, which is excellent in terms of the P-factor and R-factor uncertainty criterion. The projected streamflow matches the observed data well graphically. According to the total hydrological water balance study, 29% of precipitation is delivered to streamflow as runoff, whereas 54% of precipitation is lost through evapotranspiration. The recharge to the deep aquifers is 8%, whereas the lateral flow is 10%. The findings of this study will help as a roadmap for the anticipated water management activities for the basin since the management and planning of water resources require temporal and spatial information.
Rocznik
Strony
343--356
Opis fizyczny
Bibliogr. 46 poz., rys., tab.
Twórcy
  • Natural Resources and Sustainable Development Laboratory, Ibn Tofail University, Campus Maamora, 14000 Kenitra, Morocco
  • Natural Resources and Sustainable Development Laboratory, Ibn Tofail University, Campus Maamora, 14000 Kenitra, Morocco
  • Laboratory of Geosciences Semlalia, Faculty of Sciences Semlalia, Cadi Ayyad University, 4000 Marrakech, Morocco
autor
  • Natural Resources and Sustainable Development Laboratory, Ibn Tofail University, Campus Maamora, 14000 Kenitra, Morocco
  • Natural Resources and Sustainable Development Laboratory, Ibn Tofail University, Campus Maamora, 14000 Kenitra, Morocco
Bibliografia
  • 1. Abbaspour, K.C., 2013. Swat-cup 2012. SWAT calibration and uncertainty program – A user manual.
  • 2. Abbaspour, K.C., Rouholahnejad, E., Vaghefi, S.R.I.N.I.V.A.S.A.N.B., Srinivasan, R., Yang, H. and Kløve, B., 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of hydrology, 524, 733-752.
  • 3. Ait M’Barek, S., Rochdi, A., Bouslihim, Y. and Miftah, A., 2021. Multi-Site Calibration and Validation of SWAT Model for Hydrologic Modeling and Soil Erosion Estimation: A Case Study in El Grou Watershed, Morocco. Ecological Engineering & Environmental Technology, 22.
  • 4. Arnold, J.G., Moriasi, D.N., Gassman, P.W., Abbaspour, K.C., White, M.J., Srinivasan, R., Santhi, C., Harmel, R.D., Van Griensven, A., Van Liew, M.W. and Kannan, N., 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.
  • 5. Arnold, J.G., Srinivasan, R., Muttiah, R.S. and Williams, J.R., 1998. Large area hydrologic asining and assessment part I: model development 1. JAWRA Journal of the American Water Resources Association, 34(1), 73-89.
  • 6. Ayele, G.T., Teshale, E.Z., Yu, B., Rutherfurd, I.D. and Jeong, J., 2017. Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin, Ethiopia. Water, 9(10), p.782.
  • 7. Bahin, E.Y.B. and Haida, S., 2018. Hydrogeochemical Characterization of the Dissolved Load of the Major Elements Downstream of the Watershed of the Wadi Sebou, Morocco. Journal of Geoscience and Environment Protection, 6(07), p.159.
  • 8. Bastin, L., Cornford, D., Jones, R., Heuvelink, G.B., Pebesma, E., Stasch, C., Nativi, S., Mazzetti, P. and Williams, M., 2013. Managing uncertainty in integrated environmental modelling: The UncertWeb framework. Environmental Modelling & Software, 39, 116-134.
  • 9. Boufala, M., El Hmaidi, A., Chadli, K., Essahlaoui, A., El Ouali, A. and Taia, S., 2019. Hydrological asining of water and soil resources in the basin upstream of the Allal El Fassi dam (Upper Sebou watershed, Morocco). Modeling Earth Systems and Environment, 5(4), 1163-1177.
  • 10. Bouslihim, Y., Rochdi, A., Paaza, N.E.A. and Liuzzo, L., 2019. Understanding the effects of soil data quality on SWAT model performance and hydrological processes in Tamedroust watershed (Morocco). Journal of African Earth Sciences, 160, p.103616.
  • 11. Brouziyne, Y., Abouabdillah, A., Bouabid, R. and Benaabidate, L., 2018. SWAT streamflow asining for hydrological components’ understanding within an agro-sylvo-pastoral watershed in Morocco. J. Mater. Environ. Sci, 9(1), 128-138.
  • 12. Chaponniere, A., 2005. Fonctionnement hydrologique d’un asin versant montagneux semi aride. Cas du bassin versant du Rehraya (Haut Atlas marocain), These, Institut National Agronomique de Paris Grignon.
  • 13. Dafouf, S., Lahrach, A., Tabyaoui, H., El Hafyani, M. and Benaabidate, L., 2022. Meteorological Drought Assessment in the Ziz Watershed (South East of Morocco). Ecol. Eng, 6, 243-263.
  • 14. Daide, F., Afgane, R., Lahrach, A. and Chaouni, A.A., 2022. Beht Watershed (Morocco) Rainfall-Runoff Simulation with the HEC-HMS Hydrological Model. Ecological Engineering & Environmental Technology, 23.
  • 15. Devia, G.K., Ganasri, B.P. and Dwarakish, G.S., 2015. A review on hydrological models. Aquatic procedia, 4, 1001-1007.
  • 16. Driouech, F., Stafi, H., Khouakhi, A., Moutia, S., Badi, W., ElRhaz, K. and Chehbouni, A., 2021. Recent observed country‐wide climate trends in Morocco. International Journal of Climatology, 41, 855-874.
  • 17. Food and Agriculture Organization of the United Nations, 1977. Soil map of the world 1/5 000 000, Africa, Vol. 6, p. 346.
  • 18. Gassman, P.W., Reyes, M.R., Green, C.H. and Arnold, J.G., 2007. The soil and water assessment tool: historical development, applications, and future research directions. Transactions of the ASABE, 50(4), 1211-1250.
  • 19. Gupta, H.V., Sorooshian, S. and Yapo, P.O., 1999. Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration. Journal of hydrologic engineering, 4(2), 135-143.
  • 20. Haida, S., 2000. Transport de matière et bilan de l’érosion mécanique et de l’altération chimique dans un bassin versant de zone semi-aride: le Sebou. Impacts des variations climatiques et des activités humaines. Doctoral dissertation, Ibn Tofail University, Morocco.
  • 21. Jabri, B., Hessane, M.A., Morabbi, A. and Msatef, K., 2022. Application of soil conservation service curve number method for runoff estimation in Sebou watershed, Morocco. Ecol. Eng, 6, 70-81.
  • 22. Khalid, C., 2018. Hydrological modeling of the Mikkés watershed (Morocco) using ARCSWAT model. Sustainable Water Resources Management, 4(1), 105-115.
  • 23. Krause, P. and Flügel, W.A., 2005. Integrated research on the hydrological process dynamics from the Wilde Gera catchment in Germany. In Headwater Control VI: Hydrology, Ecology and Water Resources in Headwaters, IAHS Conference, Bergen.
  • 24. Levesque, E., Anctil, F., Van Griensven, A.N.N. and Beauchamp, N., 2008. Evaluation of streamflow simulation by SWAT model for two small watersheds under snowmelt and rainfall. Hydrological sciences journal, 53(5), 961-976.
  • 25. Ley, R., Hellebrand, H., Casper, M.C. and Fenicia, F., 2016. Comparing classical performance measures with signature indices derived from flow duration curves to assess model structures as tools for catchment classification. Hydrology Research, 47(1), 1-14.
  • 26. Markhi, A., Laftouhi, N., Grusson, Y. and Soulaimani, A., 2019. Assessment of potential soil erosion and sediment yield in the semi-arid N′ fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophysica, 67(1), 263-272.
  • 27. McKay, M.D., Beckman, R.J. and Conover, W.J., 1979. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239-245.
  • 28. Mimich K., Essahlaoui A., El Ouali, A., El Hmaidi A., 2018. Using SWAT to simulate a moroccan watershed, including an assessment of the most sensitive modelling parameters with SUFI2. The International Journal of Engineering and Science, 7(10), 50–63.
  • 29. Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D. and Veith, T.L., 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
  • 30. Nash, J.E. and Sutcliffe, J.V., 1970. River flow forecasting through conceptual models. Part I. A discussion of principles. Journal of hydrology, 10(3), 282-290.
  • 31. Neitsch, S.L., Arnold, J.G., Kiniry, J.R. and Williams, J.R., 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute. p. 647.
  • 32. Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J.R. and King, K.W., 2005. Soil and water assessment tool theoretical documentation version 2005. Grassland. Soil and Water Research Laboratory, Agricultural Research Service, Blackland Research Center, Texas Agricultural Experiment Station, Texas, 1. p. 494.
  • 33. Ouatiki, H., Boudhar, A., Tramblay, Y., Jarlan, L., Benabdelouhab, T., Hanich, L., El Meslouhi, M.R. and Chehbouni, A., 2017. Evaluation of TRMM 3B42 V7 rainfall product over the Oum Er Rbia watershed in Morocco. Climate, 5(1), p.1.
  • 34. Refsgaard, J.C., van der Sluijs, J.P., Højberg, A.L. and Vanrolleghem, P.A., 2007. Uncertainty in the environmental modelling process–a framework and guidance. Environmental modelling & software, 22(11), 1543-1556.
  • 35. Rollo N., 2012. Modélisation des dynamiques de pollution diffuse dans le bassin versant de la rivière d’Auray. Quantification, caractérisation et gestion des apports nutritifs terrigènes. Ph.D. Thesis, Nantes University, France.
  • 36. Rouholahnejad, E., Abbaspour, K.C., Vejdani, M., Srinivasan, R., Schulin, R. and Lehmann, A., 2012. A parallelization framework for calibration of hydrological models. Environmental Modelling & Software, 31, 28-36.
  • 37. Saha, S., Moorthi, S., Pan, H.L., Wu, X., Wang, J., Nadiga, S., Tripp, P., Kistler, R., Woollen, J., Behringer, D. and Liu, H., 2010. The NCEP climate forecast system reanalysis. Bulletin of the American Meteorological Society, 91(8), 1015-1058.
  • 38. Schuol, J., Abbaspour, K.C., Srinivasan, R. and Yang, H., 2008. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of hydrology, 352(1-2), 30-49.
  • 39. Senoussi, S., Agoumi, A., Yacoubi, M., Fakhraddine, A., Sayouty, E.H., Mokssit, A. and Chikri, N., 1999. Changements climatiques et ressources en eau Bassin versant de I’Ouergha (Maroc). Hydroécologie Appliquée, 11, 163-182.
  • 40. Talaee, P.H., 2014. Iranian rainfall series analysis by means of nonparametric tests. Theoretical and applied climatology, 116(3), 597-607.
  • 41. Taleb, R.B., Naimi, P.M., Chikhaoui, P.M., Raclot, D. and Sabir, P.M., 2019. Evaluation Des Performances Du Modele Agro-Hydrologique SWAT à Reproduire Le Fonctionnement Hydrologique Du Bassin Versant Nakhla (Rif occidental, Maroc). European Scientific Journal ESJ, 15(5), 311-333.
  • 42. Tramblay, Y., Badi, W., Driouech, F., El Adlouni, S., Neppel, L. and Servat, E., 2012. Climate change impacts on extreme precipitation in Morocco. Global and Planetary change, 82, 104-114.
  • 43. Van Liew, M.W., Veith, T.L., Bosch, D.D. and Arnold, J.G., 2007. Suitability of SWAT for the conservation effects assessment project: comparison on USDA agricultural research service watersheds. Journal of Hydrologic Engineering, 12(2), 173-189.
  • 44. Vogel, R.M. and Fennessey, N.M., 1994. Flow-duration curves. I: New interpretation and confidence intervals. Journal of Water Resources Planning and Management, 120(4), 485-504.
  • 45. Yang, J., Reichert, P., Abbaspour, K.C., Xia, J. and Yang, H., 2008. Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. Journal of hydrology, 358(1-2), 1-23.
  • 46. Yokoo, Y. and Sivapalan, M., 2011. Towards reconstruction of the flow duration curve: development of a conceptual framework with a physical basis. Hydrology and Earth System Sciences, 15(9), 2805-2819.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2da563f-3173-470d-a722-b5c8325f2668
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.