PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Spatiotemporal analysis of Imja Lake to estimate the downstream flood hazard using the SHIVEK approach

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Climate change is causing glaciers in the Himalayas to recede and shrink. The changing climate is the primary trigger of the expansion of glacial lakes that increases the possibilities of outburst floods (GLOFs) and leads to quantifiable losses such as mortality and damage to populations and infrastructure downstream. Therefore, determining the hazard related to the glacier lakes of the Himalayan region is essential. We have developed an approach named SHIVEK, consisting of the SWIR band thresholding technique and hazard analysis to estimate the possible downstream risk along the GLOF flow path. We examined the spatiotemporal expansion of Imja Lake from 1997 to 2020 using Landsat 5, 7, and 8 data. We employed an automated form of the previously described method based on SWIR band thresholding. The study creates yearly composites from June to September using pre-processed Landsat imageries using a cloud-based platform Google Earth Engine. Our results show a continuous expansion in the geographical area of Imja Lake from 0.81 to 1.56 km2 in 23 years between 1997 and 2020, averaging nearly 0.032 km2 per year. Also, the lake’s area between 2012 and 2020 expanded by 0.26 km2. The overall accuracy of 88.96 ± 6.93% has been achieved for spatiotemporal maps of Imja Lake and intensified confidence in the approach. This study estimates a total of 645 buildings and four bridges that can be impacted due to the outburst of Imja Lake.
Czasopismo
Rocznik
Strony
2233--2244
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
autor
  • Department of Civil Engineering, Indian Institute of Technology Indore, Indore, India
  • Department of Civil Engineering, Indian Institute of Technology Indore, Indore, India
  • Department of Civil Engineering, Indian Institute of Technology Indore, Indore, India
  • Geomatics, Georesources and Environment Laboratory, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal, Morocco
autor
  • Department of Civil Engineering, Indian Institute of Technology Indore, Indore, India
Bibliografia
  • 1. Ahmad SK, Hossain F, Eldardiry H, Pavelsky TM (2020) A fusion approach for water area classification using visible, near infrared and synthetic aperture radar for south asian conditions. IEEE Trans Geosci Remote Sens 58:2471–2480. https://doi.org/10.1109/TGRS.2019.2950705
  • 2. Ahmadi MA, Chen Z (2019) Comparison of machine learning methods for estimating permeability and porosity of oil reservoirs via petro-physical logs. Petroleum 5:271–284. https://doi.org/10.1016/j.petlm.2018.06.002
  • 3. Almazroui M, Saeed S, Saeed F et al (2020) Projections of precipitation and temperature over the South Asian Countries in CMIP6. Earth Syst Environ 4:297–320. https://doi.org/10.1007/s41748-020-00157-7
  • 4. Amani M, Mahdavi S, Kakooei M et al (2021) Wetland change analysis in Alberta, Canada using four decades of landsat imagery. IEEE J Sel Top Appl Earth Obs Remote Sens 14:10314–10335. https://doi.org/10.1109/JSTARS.2021.3110460
  • 5. Bajracharya SR, Mool P (2009) Glaciers, glacial lakes and glacial lake outburst floods in the Mount Everest region. Nepal Ann Glaciol 50:81–86. https://doi.org/10.3189/172756410790595895
  • 6. Benn DI, Bolch T, Hands K et al (2012) Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth-Science Rev 114:156–174. https://doi.org/10.1016/j.earscirev.2012.03.008
  • 7. Bhardwaj A, Singh MK, Joshi PK et al (2015) A lake detection algorithm (LDA) using Landsat 8 data: a comparative approach in glacial environment. Int J Appl Earth Obs Geoinf 38:150–163. https://doi.org/10.1016/j.jag.2015.01.004
  • 8. Bolch T, Kulkarni A, Kääb A et al (2012) The state and fate of himalayan glaciers. Science 336:310–314. https://doi.org/10.1126/science.1215828
  • 9. Carrivick JL, Rushmer EL (2006) Understanding high-magnitude outburst floods. Geol Today 22:60–65. https://doi.org/10.1111/j.1365-2451.2006.00554.x
  • 10. Carrivick JL, Tweed FS (2013) Proglacial lakes: character, behaviour and geological importance. Quat Sci Rev 78:34–52. https://doi.org/10.1016/j.quascirev.2013.07.028
  • 11. Dottori F, Szewczyk W, Ciscar J-C et al (2018) Increased human and economic losses from river flooding with anthropogenic warming. Nat Clim Chang 8:781–786. https://doi.org/10.1038/s41558-018-0257-z
  • 12. Dubey S, Goyal MK (2020) Glacial Lake Outburst Flood Hazard, Downstream Impact, and Risk Over the Indian Himalayas. Water Resour Res. https://doi.org/10.1029/2019WR026533
  • 13. Dubey S, Goyal MK (2020) Glacial lake outburst flood hazard, downstream impact, and risk over the Indian Himalayas. Water Resour Res 56:e2019WR026533
  • 14. Fujita K, Sakai A, Takenaka S et al (2013) Potential flood volume of Himalayan glacial lakes. Nat Hazards Earth Syst Sci 13:1827–1839. https://doi.org/10.5194/nhess-13-1827-2013
  • 15. Gu C, Li S, Liu M et al (2023) Monitoring glacier lake outburst flood (GLOF) of Lake Merzbacher using dense chinese high-resolution satellite images. Remote Sens 15:1941. https://doi.org/10.3390/rs15071941
  • 16. Hambrey MJ, Quincey DJ, Glasser NF et al (2008) Sedimentological, geomorphological and dynamic context of debris-mantled glaciers, Mount Everest (Sagarmatha) region. Nepal Quat Sci Rev 27:2361–2389
  • 17. ICIMOD (2021) Springshed management in the Himalaya: Ensuring water security and enhancing climate resilience
  • 18. Inman VL, Lyons MB (2020) Automated inundation mapping over large areas using landsat data and google earth engine. Remote Sens 12:1348. https://doi.org/10.3390/rs12081348
  • 19. Khadka N, Zhang G, Chen W (2019) The state of six dangerous glacial lakes in the Nepalese Himalaya. Terr Atmos Ocean Sci 30:63–72. https://doi.org/10.3319/TAO.2018.09.28.03
  • 20. Khatiwada D, Dahal RK (2020) Rockfall hazard in the Imja Glacial Lake, eastern Nepal. Geoenviron Disasters 7:29. https://doi.org/10.1186/s40677-020-00165-9
  • 21. King O, Quincey DJ, Carrivick JL, Rowan AV (2017) Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015. Cryosph 11:407–426. https://doi.org/10.5194/tc-11-407-2017
  • 22. Komori J (2008) Recent expansions of glacial lakes in the Bhutan Himalayas. Quat Int 184:177–186. https://doi.org/10.1016/j.quaint.2007.09.012
  • 23. Konz M (2006) Runoff from Nepalese headwater catchments: measurements and modelling; [a German contribution to UNESCO IHP VI Theme 1 Global Changes and Water Resources, Focal Area 1.3 integrated assessment of water resources in the context of global land based activitie. IHP-HWRP-Sekretariat c/o Bundesanst. für Gewässerkunde
  • 24. Li D, Lu X, Walling DE et al (2022) High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat Geosci 15:520–530. https://doi.org/10.1038/s41561-022-00953-y
  • 25. Liu M, Chen N, Zhang Y, Deng M (2020) Glacial lake inventory and lake outburst flood/debris flow hazard assessment after the gorkha earthquake in the Bhote Koshi Basin. Water (Switzerland). https://doi.org/10.3390/w12020464
  • 26. Maurer JM, Schaefer JM, Russell JB et al (2020) Seismic observations, numerical modeling, and geomorphic analysis of a glacier lake outburst flood in the Himalayas. Sci Adv. https://doi.org/10.1126/sciadv.aba3645
  • 27. Murray-Hudson M, Wolski P, Cassidy L et al (2015) Remote sensing-derived hydroperiod as a predictor of floodplain vegetation composition. Wetl Ecol Manag 23:603–616
  • 28. Poloczanska E (2020) The IPCC special report on ocean and cryosphere in a changing climate-a view from the mountain tops to the deepest depths
  • 29. Rounce D, Watson C, McKinney D (2017) Identification of hazard and risk for Glacial Lakes in the Nepal Himalaya using satellite imagery from 2000–2015. Remote Sens 9:654. https://doi.org/10.3390/rs9070654
  • 30. Sabin TP, Krishnan R, Vellore R et al (2020) Climate Change over the Himalayas BT - Assessment of climate change over the Indian Region: a report of the Ministry of Earth Sciences (MoES), Government of India. In: Sanjay J, Gnanaseelan C et al (eds) Krishnan R. Springer Singapore, Singapore, pp 207–222
  • 31. Sattar A, Haritashya UK, Kargel JS et al (2021) Modeling lake outburst and downstream hazard assessment of the Lower Barun Glacial Lake. Nepal Himalaya. J Hydrol 598:126208. https://doi.org/10.1016/j.jhydrol.2021.126208
  • 32. Sattar A, Haritashya UK, Kargel JS, Karki A (2022) Transition of a small Himalayan glacier lake outburst flood to a giant transborder flood and debris flow. Sci Rep 12:12421. https://doi.org/10.1038/s41598-022-16337-6
  • 33. Shen X, Wang D, Mao K et al (2019) Inundation extent mapping by synthetic aperture radar: a review. Remote Sens 11:879
  • 34. Shrestha B, Nakagawa H (2014) Assessment of potential outburst floods from the Tsho Rolpa glacial lake in Nepal. Nat Hazards 71:913–936. https://doi.org/10.1007/s11069-013-0940-3
  • 35. Somos-Valenzuela MA, McKinney DC, Rounce DR, Byers AC (2014) Changes in Imja Tsho in the Mount Everest region of Nepal. Cryosph 8:1661–1671
  • 36. Stuart-Smith RF, Roe GH, Li S, Allen MR (2021) Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat. Nat Geosci 14:85–90. https://doi.org/10.1038/s41561-021-00686-4
  • 37. Taylor C, Robinson TR, Dunning S et al (2023) Glacial lake outburst floods threaten millions globally. Nat Commun 14:487. https://doi.org/10.1038/s41467-023-36033-x
  • 38. Truffer M, Motyka RJ (2016) Where glaciers meet water: subaqueous melt and its relevance to glaciers in various settings. Rev Geophys 54:220–239
  • 39. Valenti VL, Carcelen EC, Lange K et al (2020) Leveraging Google earth engine user interface for semiautomated wetland classification in the Great Lakes Basin at 10 m with optical and radar geospatial datasets. IEEE J Sel Top Appl Earth Obs Remote Sens 13:6008–6018. https://doi.org/10.1109/JSTARS.2020.3023901
  • 40. Veh G, Korup O, von Specht S et al (2019) Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat Clim Chang 9:379–383. https://doi.org/10.1038/s41558-019-0437-5
  • 41. Veh G, Lützow N, Kharlamova V et al (2022) Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods. Earth’s Futur. https://doi.org/10.1029/2021EF002426
  • 42. Veh G, Lützow N, Tamm J et al (2023) Less extreme and earlier outbursts of ice-dammed lakes since 1900. Nature 614:701–707. https://doi.org/10.1038/s41586-022-05642-9
  • 43. Wang X, Ding Y, Liu S et al (2013) Changes of glacial lakes and implications in Tian Shan, central Asia, based on remote sensing data from 1990 to 2010. Environ Res Lett 8:44052
  • 44. Watanabe T, Lamsal D, Ives JD (2009) Evaluating the growth characteristics of a glacial lake and its degree of danger of outburst flooding: Imja Glacier, Khumbu Himal. Nepal nor Geogr Tidsskr - Nor J Geogr 63:255–267. https://doi.org/10.1080/00291950903368367
  • 45. Wolski P, Murray-Hudson M, Thito K, Cassidy L (2017) Keeping it simple: monitoring flood extent in large data-poor wetlands using MODIS SWIR data. Int J Appl Earth Obs Geoinf 57:224–234. https://doi.org/10.1016/j.jag.2017.01.005
  • 46. Yamada T, Sharma CK (1993) Glacier lakes and outburst floods in the Nepal Himalaya. IAHS Publ Int Assoc Hydrol Sci 218:319–330
  • 47. Yin G, Mariethoz G, McCabe M (2016) Gap-filling of landsat 7 imagery using the direct sampling method. Remote Sens 9:12. https://doi.org/10.3390/rs9010012
  • 48. Zhang M, Chen F, Guo H et al (2022) Glacial Lake area changes in high mountain asia during 1990–2020 using satellite remote sensing. Research. https://doi.org/10.34133/2022/9821275
  • 49. Zhang G, Bolch T, Yao T et al (2023) Underestimated mass loss from lake-terminating glaciers in the greater Himalaya. Nat Geosci. https://doi.org/10.1038/s41561-023-01150-1
  • 50. Zheng G, Allen SK, Bao A et al (2021) Increasing risk of glacial lake outburst floods from future third Pole deglaciation. Nat Clim Chang 11:411–417
  • 51. Zurqani HA, Post CJ, Mikhailova EA et al (2020) Evaluating the integrity of forested riparian buffers over a large area using LiDAR data and Google Earth Engine. Sci Rep 10:14096. https://doi.org/10.1038/s41598-020-69743-z
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2d7c78f-48ee-4fc9-b118-579261f62a06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.