PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The decisive impact of microstructure on the machinability of pure copper

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrafine-grained (UFG) materials have been of great attention due to their considerable behavior compared to coarse-grained counterparts. Also, the machinability of these UFG materials is of great importance because of the machining significance in manufacturing the final shape of industrial components. Hence, this study dealt with machinability in relation to the microstructure and mechanical properties of the UFG pure copper processed by the twist extrusion. The remarkable microstructure evolution through the dynamic recrystallization mechanisms improved the tensile strengths and hardness of the twist extrusion processed pure copper. Also, the reduction of ductility in the UFG copper compared to the initial state was related to the change of tensile fractography mechanism in which the large and deep dimples transformed into the combined small and shallow dimples with some cleavage planes in the UFG copper. Furthermore, the enhanced machinability of the processed sample was related to its lower thermal conductivity and the development of strain localization within the narrow shear bands which lead to the production of discontinuous short chips. Hence, the formation of the UFG structure is a suitable option to attain the enhanced machinability behavior of copper as one of the most used metals.
Rocznik
Strony
852--860
Opis fizyczny
Bibliogr. 36 poz., fot., rys., wykr.
Twórcy
  • School of Material Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
  • Department of Mechanical Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran
  • State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
Bibliografia
  • [1] Yılmaz B, Karabulut Ş, Güllü A. A review of the chip breaking methods for continuous chips in turning. J Manuf Process. 2020;49:50–69. https://doi.org/10.1016/j.jmapro.2019.10.026.
  • [2] Sharma V, Pandey PM. Recent advances in turning with textured cutting tools: a review. J Clean Prod. 2016;137:701–15. https://doi.org/10.1016/j.jclepro.2016.07.138.
  • [3] Kishawy HA, Dumitrescu M, Ng EG, Elbestawi MA. Effect of coolant strategy on tool performance, chip morphology and surfach quality during high-speed machining of A356 aluminum alloy. Int J Mach Tools Manuf. 2005;45:219–27. https://doi.org/10.1016/j.ijmachtools.2004.07.003.
  • [4] Lapovok R, Molotnikov A, Levin Y, Bandaranayake A, Estrin Y. Machining of coarse grained and ultra fine grained titanium. J Mater Sci. 2012;47:4589–94. https://doi.org/10.1007/s10853-012-6320-7.
  • [5] Ebrahimi M, Gode C. Severely deformed copper by equal channel angular pressing. Pro Nat Sci Mater Int. 2017. https://doi.org/10.1016/j.pnsc.2017.03.002.
  • [6] Edalati K, Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988. Mater Sci Eng A. 2016;652:325–52. https://doi.org/10.1016/j.msea.2015.11.074.
  • [7] Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation. JOM. 2006;58(4):33–9.
  • [8] Ebrahimi M, Par MA. Twenty-year uninterrupted endeavor of friction stir processing by focusing on copper and its alloys. J Alloys Compd. 2019;781:1074–90. https://doi.org/10.1016/j.jallcom.2018.12.083.
  • [9] Estrin Y, Janecek M, Raab GI, Valiev RZ, Zi A. Severe plastic deformation as a means of producing systems parts. Metall Mater Trans A. 2007. https://doi.org/10.1007/s11661-007-9120-y.
  • [10] Valiev RZ, Estrin Y, Horita Z, Langdon TG, Zehetbauer MJ, Zhu YT. Producing bulk ultrafine-grained materials by severe plastic deformation. J Miner Met Mater Soc. 2006;58:33–9.
  • [11] Wang P, Xiang Y, Wang X, Liu Z, Qu S, Zhuang Z. New insight for mechanical properties of metals processed by severe plastic deformation. Int J Plast. 2019;123:22–37. https://doi.org/10.1016/j.ijplas.2019.05.005.
  • [12] Yang G, Li Z, Yuan Y, Lei Q. Microstructure, mechanical properties nd electrical conductivity of Cu-0.3Mg-0.05Ce alloy processed by equal channel angular pressing and subsequent annealing. J Alloys Compd. 2015;640:347–54. https://doi.org/10.1016/j.jallcom.2015.03.218.
  • [13] Ebrahimi M, Gode C. Severely deformed copper by equal channel angular pressing. Prog Nat Sci Mater Int. 2017;27:244–50. https://doi.org/10.1016/j.pnsc.2017.03.002.
  • [14] Ebrahimi M, Djavanroodi F, Tiji S, Gholipour H, Gode C. Experimental investigation of the equal channel forward extrusion process. Metals (Basel). 2015;5:471–83. https://doi.org/10.3390/met5010471.
  • [15] Ebrahimi M, Attarilar S, Djavanroodi F, Gode C, Kim HS. Wear properties of brass samples subjected to constrained groove pressing process. Mater Des. 2014;63:531–7. https://doi.org/10.1016/j.matdes.2014.06.043.
  • [16] Ebrahimi M. Fatigue behaviors of materials processed by planar twist extrusion. Metall Mater Trans A. 2017;48:6126–34. https://doi.org/10.1007/s11661-017-4375-4.
  • [17] Shahmir H, Langdon TG. Materials science and engineering A an evaluation of the hexagonal close-packed to face-centered cubic phase transformation in a Ti-6Al-4V alloy during high-pressure torsion. Mater Sci Eng A. 2017;704:212–7. https://doi.org/10.1016/j.msea.2017.07.099.
  • [18] Hosseini SA, Manesh HD. High-strength, high-conductivity ultrafine grains commercial pure copper produced by ARB process. Mater Des. 2009;30:2911–8. https://doi.org/10.1016/j.matdes.2009.01.012.
  • [19] Vu VQ, Prokof’eva O, Toth LS, Usov V, Shkatulyak N, Estrin Y, Kulagin R, Varyukhin V, Beygelzimer Y. Obtaining hexagon-shaped billets of copper with gradient structure by twist extrusion. Mater Charact. 2019;153:215–23. https://doi.org/10.1016/j.matchar.2019.04.042.
  • [20] Beygelzimer Y, Varyukhin V, Synkov S, Orlov D. Useful properties of twist extrusion. Mater Sci Eng A. 2009;503:14–7. https://doi.org/10.1016/j.msea.2007.12.055.
  • [21] Beygelzimer Y, Prilepo D, Kulagin R, Grishaev V, Abramova O, Varyukhin V, Kulakov M. Planar twist extrusion versus twist extrusion. J Mater Process Technol. 2011;211:522–9. https://doi.org/10.1016/j.jmatprotec.2010.11.006.
  • [22] Akbari Mousavi SAA, Shahab AR, Mastoori M. Computational study of Ti-6Al-4V flow behaviors during the twist extrusion process. Mater Des. 2008;29:1316–29. https://doi.org/10.1016/j.matdes.2007.07.009.
  • [23] Guru PR, Khan F, Panigrahi SK, Ram GDJ. Enhancing strength, ductility and machinability of a Al-Si cast alloy by friction stir processing. J Manuf Process. 2015;18:67–74. https://doi.org/10.1016/j.jmapro.2015.01.005.
  • [24] Humphreys J, Rohrer GS, Rollett A. Continuous recrystallization during and after large strain deformation. In: Recryst. Relat. Annealing Phenom. Elsevier, 2017;pp. 509–526. https://doi.org/10.1016/B978-0-08-098235-9.00014-8.
  • [25] Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas JJ. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog Mater Sci. 2014;60:130–207. https://doi.org/10.1016/j.pmatsci.2013.09.002.
  • [26] Hughes DA, Hansen N. High angle boundaries formed by grain subdivision mechanisms. Acta Mater. 1997;45:3871–86. https://doi.org/10.1016/S1359-6454(97)00027-X.
  • [27] Han BQ, Lavernia EJ, Mohamed FA. Dislocation structure and deformation in iron processed by equal-channel-angular pressing.Metall Mater Trans A. 2004;35A:1343–50. https://doi.org/10.1007/s11661-004-0309-z.
  • [28] Ma K, Wen H, Hu T, Topping TD, Isheim D, Seidman DN, Lavernia EJ, Schoenung JM. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminium alloy. Acta Mater. 2014;62:141–55. https://doi.org/10.1016/j.actamat.2013.09.042.
  • [29] Lee Y, Chang AK, Dornfeld DA. Acoustic emission monitoring for the diamond machining of oxygen-free high-conductivity copper. J Mater Process Technol. 2002;127:199–205. https://doi.org/10.1016/S0924-0136(02)00126-7.
  • [30] Huang Y, Chou YK, Liang SY. CBN tool wear in hard turning: a survey on research progresses. Int J Adv Manuf Technol. 2007;35:443–53. https://doi.org/10.1007/s00170-006-0737-6.
  • [31] Huang Y, Dawson TG. Tool crater wear depth modeling in CBN hard turning. Wear. 2005;258:1455–61. https://doi.org/10.1016/j.wear.2004.08.010.
  • [32] Gendelman OV, Shapiro M, Estrin Y, Hellmig RJ, Lekhtmakher S. Grain size distribution and heat conductivity of copper processed by equal channel angular pressing. Mater Sci Eng A. 2006;434:88–94. https://doi.org/10.1016/j.msea.2006.06.091.
  • [33] Abdel-Aal HA, Nouari M, El Mansori M. Influence of thermal conductivity on wear when machining titanium alloys. Tribol Int. 2009;42:359–72. https://doi.org/10.1016/j.triboint.2008.07.005.
  • [34] Guo FA, Zhu KY, Trannoy N, Lu J. Examination of thermal properties by scanning thermal microscopy in ultrafine-grained puretitanium surface layer produced by surface mechanical attrition treatment. Thermochim Acta. 2004;419:239–46. https://doi.org/10.1016/j.tca.2004.02.018.
  • [35] Lapovok R, Tóth LS, Molinari A, Estrin Y. Strain localisation patterns under equal-channel angular pressing. J Mech Phys Solids. 2009;57:122–36. https://doi.org/10.1016/j.jmps.2008.09.012.
  • [36] Jawaid A, Che-Haron CH, Abdullah A. Tool wear characteristics in turning of titanium alloy Ti-6246. J Mater Process Technol. 1999;92–93:329–34. https://doi.org/10.1016/S0924-0136(99)00246-0.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2d744e8-abf9-4c58-8147-8f1544997de5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.