Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We examine the stochastic parabolic integral equation of convolution type U(t)+A∫t0k1(t-s)U(s)ds=∫t0k2(t-s)G(s)dWH(s), t≥0, where U(t) takes values in Lq(O; R) with O a σ-finite measure space, and q∈[2, ∞). The linear operator A maps D(A)⊂Lq(O; R) into Lq(O; R), is nonnegative and admits a bounded H∞-calculus on Lq(O; R). The kernels are powers of t, with k1(t)=1/Γ(α) tα-1, k2(t)=1/Γ(β) tβ-1, and α∈(0, 2), β∈(1/2, 2). We show that, in the maximal regularity case, where β-αθ-η=1/2, one has the estimate ║AθDηtU║Lp(R+xΩ;Lq(O;R))≤C║G║Lp(R+xΩ;Lq(O;H)), where c is independent of G. Here θ ∈(0, 1) and Dηt denotes fractional integration if η∈(-1, 0), and fractional differentiation if η∈(0, 1), both with respect to the t-variable. The proof relies on recent work on stochastic differential equations by van Neerven, Veraar and Weis, and extends their maximal regularity result to the integral equation case.
Wydawca
Czasopismo
Rocznik
Tom
Strony
125--140
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Department of Mathematics and Scientific Computing, Karl-Franzens-University Graz, Heinrichstrasse 36, 8010 Graz, Austria
autor
- Department of Mathematics, Aalto University, PO Box 11100, FI-00076 Aalto, Finland
Bibliografia
- [1] C. Martinez Carracedo and M. Sanz Alix, The Theory of Fractional Powers of Operators, North-Holland Math. Stud. 187, North-Holland, Amsterdam, 2001.
- [2] P. Clément, S.-O. Londen and G. Simonett, Quasilinear evolutionary equations and continuous interpolation spaces, J. Differential Eqs. 196 (2004), 418-447.
- [3] W. Desch and S.-O. Londen, A generalization of an inequality by N. V. Krylov, J. Evolution Eqs. 9 (2009), 525-560.
- [4] W. Desch and S.-O. Londen, An Lp-theory for stochastic integral equations, J. Evolution Eqs. 11 (2011), 287-317.
- [5] N. V. Krylov, A parabolic Littlewood-Paley inequality with applications to parabolic equations, Topol. Methods Nonlinear Anal. 4 (1994), 355-364.
- [6] N. V. Krylov, An analytic approach to SPDEs, in: Stochastic Partial Differential Equations: Six Perspectives, Math. Surveys Monogr. 64, American Mathematical Society, Providence (1999), 185-242.
- [7] J. van Neerven, M. Veraar and L. Weis, Stochastic maximal Lp-regularity, Ann. Probab. 40 (2012), 788-812.
- [8] L. W. Weis, The H∞ holomorphic functional calculus for sectorial operators - A survey, in: Partial Differential Equations and Functional Analysis, Oper. Theory Adv. Appl. 168, Birkhäuser, Basel (2006), 263-294.
- [9] R. Zacher, Quasilinear parabolic problems with nonlinear boundary conditions, dissertation, Martin-Luther-Universität Halle-Wittenberg, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2d5c363-49ea-4372-9297-1e69d5b12688