PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance Study on Cathode Microporous Layer Using Biomass Activated Carbon for Passive Direct Ethanol Fuel Cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In passive direct ethanol fuel cells (DEFCs), the micro-porous layer (MPL) is a vital component of the membrane electrode assembly (MEA), facilitating gas-liquid mass transport and improving electronic conductivity. The conducted study involved preparing various carbon materials for the cathode MPL, including Ketjen Black (KB), activated carbon (AC) from Durian shells, and a 15% weight mixture of AC and KB (AC15%). Characterization of the activated carbon was carried out using nitrogen adsorption-desorption isotherm analysis. Additionally, various electrochemical techniques, including cell polarization, electrochemical impedance spectroscopy (EIS), anode half-cell polarization, and anode EIS, were conducted to examine the effects of the cathode MPLs on cell performance. The results indicated that the cell with the conventional KB cathode MPL displayed the highest performance, whereas the AC15% and AC cathode MPLs showed relatively lower performances, respectively. The AC cathode MPL in the cell encountered challenges, such as decreased pore volume, increased micropores, and a hydrophobic electrode nature, leading to reduced gas transport resulting in poor cell performance. In contrast, the AC15% cathode MPL, which combined AC and KB in the electrode, achieved an appropriate micropore and mesopore balance. However, performance did not improve due to a heterogeneous contact surface between the cathode catalyst layer and the cathode MPL, resulting in higher ohmic resistance. Incorporating biomass-based materials into the electrode presents an interesting possibility due to the utilization of cheap and readily available precursors, as well as the ability to tailor morphology. Conducting a systematic study of durian shell activated carbons would reveal improved properties of the carbon material suitable for implementing in the MPL of passive DEFCs.
Rocznik
Strony
214--224
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Faculty of Science Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong, 21120, Thailand
  • Faculty of Science Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong, 21120, Thailand
  • Faculty of Science Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong, 21120, Thailand
  • Faculty of Science Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong, 21120, Thailand
  • Faculty of Science Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong, 21120, Thailand
Bibliografia
  • 1. An L., Zhao T.S., Li Y.S. 2015. Carbon-neutral sustainable energy technology: Direct ethanol fuel cells. Renewable and Sustainable Energy Reviews, 50, 1462–1468.
  • 2. Azam A.M.I.N., Lee S.H., Masdar M.S., Zainoodin A.M., Kamarudin S.K. 2019. Parametric study on direct ethanol fuel cell (DEFC) performance and fuel crossover. International Journal of Hydrogen Energy, 44(16), 8566–8574.
  • 3. Badwal S.P.S., Giddey S., Kulkarni A., Goel J., Basu S. 2015. Direct ethanol fuel cells for transport and stationary applications – A comprehensive review. Applied Energy, 145, 80–103.
  • 4. Balakrishnan P., Inal I.G., Cooksey E., Banford A., Aktas Z., Holmes S.M. 2017. Enhanced performance based on a hybrid cathode backing layer using a bio- mass derived activated carbon framework for methanol fuel cells. Electrochimica Acta, 251, 51–59.
  • 5. Braz BA., Oliveira V.B., Pinto A.M.F.R. 2019. Experimental studies of the effect of cathode diffusion layer properties on a passive direct methanol fuel cell power output. International Journal of Hydrogen Energy, 44(35), 19334–19343.
  • 6. Cao J., Chen M., Chen J., Wang S., Zou Z., Li Z., et al. 2010. Double microporous layer cathode for membrane electrode assembly of passive direct methanol fuel cells. International Journal of Hydrogen Energy, 35, 4622–4629.
  • 7. Cao J., Wang L., Song L., Xu J., Wang H., Chen Z., et al. 2014. Novel cathodal diffusion layer with mesoporous carbon for the passive direct methanol fuel cell. Electrochimica Acta, 118, 163–168.
  • 8. Ekdharmasuit P., Therdthianwong A., Therdthianwong S. 2013. Anode structure design for generating high stable power output for direct ethanol fuel cells. Fuel, 113, 69–76.
  • 9. Ekdharmasuit P., Therdthianwong A., Therdthianwong S. 2014. The role of an anode microporous layer in direct ethanol fuel cells at different ethanol concentrations. International Journal of Hydrogen Energy, 39, 1775–1782.
  • 10. Elsaid K., Abdelfatah S., Elabsir A.M.A., Hassiba R.J., Ghouri Z.K., Vechot L. 2021. Direct alcohol fuel cells: Assessment of the fuel’s safety and health aspects. International Journal of Hydrogen Energy, 46(59), 30658–30668.
  • 11. Hiramitsu Y., Sato H., Hori M. 2010. Prevention of the water flooding by micronizing the pore structure of gas diffusion layer for polymer electrolyte fuel cell. Journal of Power Sources, 195, 5543–5549.
  • 12. Matos B.R., Goulart C.A., Tosco B., da Silva J.S., Isidoro R.A., Santiago E.I., et al. 2020. Properties and DEFC tests of Nafion - Functionalized titanate nanotubes composite membranes prepared by meltextrusion, 604, 118042.
  • 13. Monreal J.S., García-Salaberri P.A., Vera M. 2019. A mathematical model for direct ethanol fuel cells based on detailed ethanol electro-oxidation kinetics. Applied Energy, 251, 113264.
  • 14. Moreno-Jiménez, D.A., Pacheco-Catalán D.E., Ordóñez L.C. 2015. Influence of MEA Catalytic Layer Location and Air Supply on Open-Cathode Direct Ethanol Fuel Cell Performance. International Journal of Electrochemical Science, 10(11), 8808–8822.
  • 15. Oliveira V.B., Pereira J.P., Pinto A.M.F.R. 2017. Modeling of passive direct ethanol fuel cells. Energy, 133, 652–665.
  • 16. Ong B.C., Kamarudin S.K., Basri S. 2017. Direct liquid fuel cells: A review. International Journal of Hydrogen Energy, 42 (15), 10142–10157.
  • 17. Pereira J.P., Falcão D.S., Oliveira V.B., Pinto A.M.F.R. 2014. Performance of a passive direct ethanol fuel cell. Journal of Power Sources, 256, 14–19.
  • 18. Pittayaporn N., Therdthianwong A., Therdthianwong S., Songprakorp R. 2019. Dynamic modeling of direct ethanol fuel cells upon electrical load change. International Journal of Energy Research, 43(7), 2615–2634.
  • 19. Prabhuram J., Krishnan N.N., Choi B., Lim T.H., Ha H.Y., Kim S.K. 2010. Long-term durability test for direct methanol fuel cell made of hydrocarbon membrane. International Journal of Hydrogen Energy, 35, 6924–6933.
  • 20. Shaari N., Kamarudin S.K., Bahru R., Osman S.H., Ishak N.A.I.M. 2020. Progress and challenges: Review for direct liquid fuel cell. International Journal of Energy Research, 45, 6644–6688.
  • 21. Shrivastava N.K., Chadge R.B., Ahire P., Giri J.P. 2019. Experimental investigation of a passive direct ethanol fuel cell. Ionics, 25, 719–726.
  • 22. Tey J.P., Careem M.A., Yarmo M.A., Arof A.K. 2016. Durian shell-based activated carbon electrode for EDLCs. Ionics, 22, 1209–1216.
  • 23. Thomas P., Lai C.W., Johan M.R.B. 2019. Recent developments in biomass-derived carbon as a potential sustainable material for super-capacitor-based energy storage and environmental applications. Journal of Analytical and Applied Pyrolysis, 140, 54–85.
  • 24. Wang K., Wang F., Zhao Y., Zhang W. 2021. Surface-tailored PtPdCu ultrathin nanowires as advanced electrocatalysts for ethanol oxidation and oxygen reduction reaction in direct ethanol fuel cell. Journal of Energy Chemistry, 52, 251–261.
  • 25. Weber A.Z., Newman J. 2005. Effects of Microporous Layers in Polymer Electrolyte Fuel Cells. Journal of The Electrochemical Society, 152, A677–A688.
  • 26. Yong Y.W., Azam A.M.I.N., Masdar M.S., Zainoodin A.M., Kamarudin S.K. 2020. Anode structure with double-catalyst layers for improving the direct ethanol fuel cell performance. International Journal of Hydrogen Energy, 45(42), 22302–22314.
  • 27. Zhang J., Feng L., Cai W., Liu C., Xing W. 2011. The function of hydrophobic cathodic backing layers for high energy passive direct methanol fuel cell. Journal of Power Sources, 196, 9510–9515.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2d12c0c-d093-4008-892e-2ce488448dfb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.