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Abstract

With the growing trend toward remote security verification procedures for telephone
banking, biometric security measures and similar applications, automatic speaker veri-
fication (ASV) has received a lot of attention in recent years. The complexity of ASV
system and its verification time depends on the number of feature vectors, their dimen-
sionality, the complexity of the speaker models and the number of speakers. In this paper,
we concentrate on optimizing dimensionality of feature space by selecting relevant fea-
tures. At present there are several methods for feature selection in ASV systems. To
improve performance of ASV system we present another method that is based on ant
colony optimization (ACO) algorithm. After feature selection phase, feature vectors are
applied to a Gaussian mixture model universal background model (GMM-UBM) which
is a text-independent speaker verification model. The performance of proposed algorithm
is compared to the performance of genetic algorithm on the task of feature selection in
TIMIT corpora. The results of experiments indicate that with the optimized feature set,
the performance of the ASV system is improved. Moreover, the speed of verification
is significantly increased since by use of ACO, number of features is reduced over 80%
which consequently decrease the complexity of our ASV system.

1 Introduction

Automatic speaker recognition (ASR) systems
are generally divided into two categories, namely:
automatic speaker identification (ASI) systems
which are designed to answer the question “who
is the speaker?” or automatic speaker verification
(ASV) systems that aim to answer the question “is
the speaker who they claim to be?”.

Automatic speaker verification refers to the
task of verifying speaker’s identity using speaker-
specific information contained in speech signal.
Speaker verification methods are totally divided
into text-dependent and text-independent applica-
tions. When the same text is used for both train-
ing and testing, the system is called to be text-
dependent while for text-independent operation; the

text used to train and test of the ASV system is com-
pletely unconstrained. Text independent speaker
verification requires no restriction on the type of in-
put speech. In contrast, text independent speaker
verification usually gives less performance than text
dependent speaker verification, which requires test
input to be the same sentence as training data [1].

Applications of speaker verification can be
found in biometric person authentication such as
an additional identity check during credit card pay-
ments over the Internet while, the potential applica-
tions of speaker identification can be found in multi-
user systems. For instance, in speaker tracking the
task is to locate the segments of given speaker(s) in
an audio stream [2, 3]. It has also potential applica-
tions in automatic segmentation of teleconferences
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and helping in the transcription of courtroom dis-
cussions.

Speech signals contain a huge amount of infor-
mation and can be described as having a number of
different levels of information. At the top level, we
have lexical and syntactic features, below that are
prosodic features, further below these are phonetic
features, and at the most basic level we have low-
level acoustic features, which generally give infor-
mation on the system that creates the sound, such as
the speakers’ vocal tract. Information solely about
how the sound is produced (from low level acoustic
features) should give enough information to iden-
tify accurately a speaker as this is naturally speaker
dependent and independent of text [4].

Low level acoustic features also contain some
redundant features, which can be eliminated using
feature selection (FS) techniques. The objective of
FS is to simplify a dataset by reducing its dimen-
sionality and identifying relevant underlying fea-
tures without sacrificing predictive accuracy. By
doing that, it also reduces redundancy in the infor-
mation provided by the selected features [5]. In real
world problems FS is a must due to the abundance
of noisy, irrelevant or misleading features. Selected
features should have high inter-class variance and
low intra-class variability. Ideally they should also
be as independent of each other as possible in order
to minimize redundancy.

Feature selection is extensive and it spreads
throughout many fields, including signal process-
ing [6], face recognition [7], text categorization [8],
data mining and pattern recognition [5, 7]. Fea-
ture selection has been rarely used in ASV sys-
tems. Day and Nandi [4] employed genetic pro-
gramming for FS; also L plus-R minus feature se-
lection algorithm is used by Pandit and Kittkr [9]
for text-dependent speaker verification. Cohen and
Zigel [10] employed Dynamic Programming for FS
in speaker verification and Ganchev et al. [11] used
information gain and gain ratio for FS in ASV task.

Among too many methods which are proposed
for FS, population-based optimization algorithms
such as genetic algorithm (GA)-based method and
ant colony optimization (ACO)-based method have
attracted a lot of attention. These methods attempt
to achieve better solutions by application of knowl-
edge from previous iterations. Genetic algorithms
are optimization techniques based on the mecha-

nism of natural selection. They used operations
found in natural genetics to guide itself through the
paths in the search space [12]. Because of their ad-
vantages, recently, GAs have been widely used as a
tool for feature selection in data mining [13].

Meta-heuristic optimization algorithm based on
behavior of ants was represented in the early 1990s
by M. Dorigo and colleagues [14]. ACO is a branch
of newly developed form of artificial intelligence
called swarm intelligence. Formally, swarm intel-
ligence refers to the problem-solving behavior that
emerges from the interaction of cooperative agents,
and computational swarm intelligence refers to al-
gorithmic models of such behavior. ACO algorithm
is inspired by social behavior of ant colonies. Al-
though they have no sight, ants are capable of find-
ing the shortest route between a food source and
their nest by chemical materials called pheromone
that they leave when moving [15].

ACO algorithm was firstly used for solving
traveling salesman problem (TSP) [15] and then has
been successfully applied to a large number of dif-
ficult problems like the quadratic assignment prob-
lem (QAP) [16], routing in telecommunication net-
works, graph coloring problems, scheduling, etc.
This method is particularly attractive for feature se-
lection as there seems to be no heuristic that can
guide search to the optimal minimal subset every
time [7].

In this paper we propose an ACO algorithm for
feature selection in ASV systems based on GMM-
UBM and apply it to larger feature vectors contain-
ing Mel-frequency cepstral coefficients (MFCCs)
and their delta coefficients, two energies and linear
prediction cepstral coefficients (LPCCs) and their
delta coefficients. Then, feature vectors are applied
to a Gaussian mixture model universal background
model (GMM-UBM) which is a text-independent
speaker verification Model. Finally the verification
quality and the length of selected feature vector are
considered for performance evaluation.

The rest of this paper is organized as follows.
Section 2 presents a brief overview of ASV sys-
tems. Feature selection methods are described in
section 3. Ant colony optimization and proposed
feature selection algorithm are explained in Sec-
tion 4. Genetic algorithms are described in section
5. Section 6 reports computational experiments. It
also includes a brief discussion of the results ob-
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tained and finally the conclusion is offered in the
last section.

2 An Overview of ASV Systems

The typical process in most proposed ASV sys-
tems involves: some form of preprocessing of the
data (silence removal) and feature extraction, fol-
lowed by some form of speaker modeling to esti-
mate class dependent feature distributions (see Fig-
ure 1). A comprehensive overview can be found in
[17]. Adopting this strategy the ASV problem can
be further divided into the two problem domains of:

1 Preprocessing, feature extraction and selection

2 Speaker modeling and matching.

These two steps are described in following sec-
tions in more details.

2.1 Feature Extraction

The original signal, the speech waveform, con-
tains all information about the speaker, and each
step in the extraction process can only reduce the
mutual information or leave it unchanged. The ob-
jective of the feature extraction is to reduce the di-
mension of the input signal and thereby reduce the
complexity of the system. The main task for the fea-
ture extraction process is to pack as much speaker-
discriminating information as possible into as few
features as possible.

The choice of features in any proposed ASV
system is of primary concern, because if the fea-
ture set does not yield sufficient information then
trying to estimate class dependent feature distribu-
tions is futile [18]. Most feature extraction tech-
niques in speaker verification were originally used
in speech recognition. However, the focus in us-
ing these techniques was shifted to extract features
with high variability among people. Most com-
monly used features extraction techniques, such as
Mel-frequency cepstral coefficients (MFCCs) and
linear prediction cepstral coefficients (LPCCs) have
been particularly popular for ASV systems in recent
years. This transforms give a highly compact repre-
sentation of the spectral envelope of a sound [19].

Delta-features, regardless on what features they
are based, can be computed as a one-to-one function

of the features themselves. Therefore, the delta-
features do not contain more information than is al-
ready in the features, and from the theory, no gain
can be achieved by using them together with the
features. However, the delta-features can be used
as a simplified way of exploiting inter-feature de-
pendencies in suboptimal schemes [4].

2.2 Speaker Modeling

The speaker modeling stage of the process
varies more in the literature. The purpose of
speaker modeling is characterizing an individual
which is enrolled into an ASV system with the aim
of defining a model (usually feature distribution val-
ues). The three most popular methods in previ-
ous works are Gaussian mixture models (GMM)
[19,20], Gaussian mixture models universal back-
ground model (GMM-UBM) [21, 22] and vector
quantization [23]. Other techniques such as deci-
sion trees [24], support vector machine (SVM) [25]
and artificial neural network (ANN) [26] have also
been applied. In this paper GMM-UBM is used for
speaker modeling.

2.3 GMM-UBM approach

GMM-UBM is the predominant approach used
in speaker recognition systems, particularly for
text-independent task [22]. Given a segment of
speech Y and a speaker S, the speaker verification
task consists in determining if Y was spoken by S
or not. This task is often stated as basic hypothesis
test between two hypotheses: Y is from the hypoth-
esized speaker S (H0), and Y is not from the hypoth-
esized speaker S (H1). A likelihood ratio (LR) be-
tween these two hypotheses is estimated and com-
pared to a decision threshold Φ. The LR test is given
by:

LR(Y,H0,H1) =
p(Y |H0)

p(Y |H1)
(1)

where Y is the observed speech segment,
p(Y|H0) is the likelihood function for the hypoth-
esis H0 evaluated for Y, p(Y|H1) is the likelihood
function for H1 and Φ is the decision threshold
for accepting or rejecting H0. If LR(Y,H0,H1)>Φ,
H0 is accepted else H0 is rejected. A model
denotedλhyprepresents H0, it is learned using an ex-
tract of speaker S voice. The model λUBM rep-
resents the alternative hypothesis, H1, and is usu-
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Figure 1. Overview of the speaker verification process

ally learned using data gathered from a large set of
speakers.

The likelihood ratio statistic becomes p(Y |λhyp)
p(Y |λUBM) .

Often, the logarithm of this statistic is used giving
the Log LR (LLR):

LLR(Y ) = log p(Y |λhyp)− log p(Y |λUBM) (2)

In the presented approach, the models are Gaus-
sian Mixture Models which estimate a probability
density function by:

p(x|λ) =
M

∑
i=1

wiN(xt ,µi,Σi) (3)

where wi, i = 1, · · · .c are the mixture weights that
satisfy 0 ≤ wi ≤ 1,∑c

i=1 wi = 1and N(xt ,µi,Σi)are
the d-variate Gaussian component densities with
mean vectors µi and covariance matrices Σi

N(xt ,µi,Σi) =
exp

{
−1

2(xt −µi)
′Σ−1

i (xt −µi)
}

(2π)d/2 |Σi|1/2

(4)

Usually a large number of components in the
mixture and diagonal covariance matrices are used
[21].

2.3.1 Universal Background Model

The UBM has been introduced and successfully
applied by Reynolds [21] to speaker verification. It
aims at representing the inverse hypothesis in the
Bayesian test, i.e. it is designed to compute the data
probability not to belong to the targeted speaker,
i.e.λhyp. A UBM is learned with multiple audio files

from different speakers, usually several hundreds.
For speaker verification, some approaches consist
in having specific UBM models, such as a UBM
model per gender or per channel.

The UBM is trained with the EM algorithm on
its training data. For the speaker verification pro-
cess, it fulfills two main roles:

– It is the a priori model for all target speakers
when applying Bayesian adaptation to derive
speaker models.

– It helps to compute logarithm likelihood ratio
much faster by selecting the best Gaussian for
each frame on which likelihood is relevant [22].

3 Feature Selection Approaches

Feature selection is included in discrete opti-
mization problems. The whole search space for op-
timization contains all possible subsets of features,
meaning that its size is:

n

∑
s=0

(
n
s

)
=

(
n
0

)
+

(
n
1

)
+ ...+

(
n
n

)
= 2n

(5)
where, n is the dimensionality (the number of fea-
tures) and s is the size of the current feature sub-
set [27]. Usually FS algorithms involve heuristic or
random search strategies in an attempt to avoid this
prohibitive complexity. However, the degree of op-
timality of the final feature subset is often reduced
[5].
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The objectives of feature selection are manifold,
the most important ones being:

– To avoid over fitting and improve prediction per-
formance.

– To provide faster and more cost-effective mod-
els.

– To gain a deeper insight into the underlying pro-
cesses that generated the data.

In the context of classification, feature selec-
tion techniques can be organized into three cate-
gories, depending on their evaluation procedure: fil-
ter methods, wrapper methods and embedded meth-
ods [28]. If an algorithm performs FS indepen-
dent of any learning algorithm (i.e. it is a com-
pletely separate preprocessor), then it is included in
filter approach category. This approach is mostly
includes selecting features based on inter-class sep-
arability criterion [28]. If the evaluation procedure
is tied to the task (e.g. classification) of the learning
algorithm, the FS algorithm is a sort of wrapper ap-
proach. This method searches through the feature
subset space using the estimated accuracy from an
induction algorithm as a measure of subset suitabil-
ity. If the feature selection and learning algorithm
are interleaved then the FS algorithm is a kind of
embedded approach [27]. A common disadvantage
of filter methods is that they ignore the interaction
with the classifier. The wrapper method is compu-
tationally more involved, but takes the dependency
of the learning algorithm on the feature subset into
account [5].

In the wrapper approach the evaluation func-
tion calculates the suitability of a feature subset pro-
duced by the generation procedure and it also com-
pares that with the previous best candidate, replac-
ing it if found to be better. A stopping criterion is
tested in each of iterations to determine whether or
not the FS process should continue.

Other famous FS approaches are based on the
genetic algorithm [13], simulated annealing, parti-
cle swarm optimization [29] and ant colony opti-
mization [30, 7]. Reference [30] proposes a subset
search procedure based on ACO for speech classi-
fication problem. The hybrid of ACO and mutual
information has been used for feature selection in
the forecaster [31]. Furthermore, ACO is used for

finding rough set reducts [5]. Also, in [7] an ACO-
based method has been used in the application of
face recognition systems and some surveys of fea-
ture selection algorithms are given in [32, 13].

4 Ant Colony Optimization

In the early 1990s, ant colony optimization was
introduced by M. Dorigo and colleagues as a novel
nature-inspired meta-heuristic for the solution of
hard combinatorial optimization problems. An ant
colony optimization algorithm is essentially a sys-
tem based on agents which simulate the natural be-
havior of ants, including mechanisms of coopera-
tion and adaptation. The inspiring source of ACO
is the foraging behavior of real ants [33].

The first ACO algorithm developed was the ant
system [34], and since then several improvement
of the AS have been devised [35, 36]. The ACO
algorithm is based on a computational paradigm
inspired by real ant colonies and the way they
function. The underlying idea was to use several
constructive computational agents (simulating real
ants). A dynamic memory structure incorporating
information on the effectiveness of previous choices
based on the obtained results, guides the construc-
tion process of each agent.

The paradigm is based on the observation made
by ethologists about the medium used by ants to
communicate information regarding shortest paths
to food by means of pheromone trails. A moving
ant lays some pheromone on the ground, thus mak-
ing a path by a trail of this substance. While an iso-
lated ant moves practically at random, exploration,
an ant encountering a previously laid trail can de-
tect it and decide with high probability to follow it,
exploitation, and consequently reinforces the trail
with its own pheromone. What emerges is a form
of autocatalytic process through which the more the
ants follow a trail, the more attractive that trail be-
comes to be followed. The process is thus char-
acterized by a positive feedback loop, during which
the probability of choosing a path increases with the
number of ants that previously chose the same path.
The mechanism above is the inspiration for the al-
gorithms of the ACO family [37].
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4.1 Proposed ACO Algorithm for Feature
Selection

As mentioned earlier given a feature set of size
n, the FS problem is to find a minimal feature subset
of size s (s<n) while retaining a suitably high accu-
racy in representing the original features. There-
fore, there is no concept of path. A partial solution
does not define any ordering among the components
of the solution, and the next component to be se-
lected is not necessarily influenced by the last com-
ponent added to the partial solution [38, 39]. Fur-
thermore, solutions to an FS problem are not neces-
sarily of the same size. To apply an ACO algorithm
to solve a feature selection problem, these aspects
need to be addressed. The first problem is addressed
by redefining the way that the representation graph
is used.

4.1.1 Graph Representation

The feature selection problem may be reformu-
lated into an ACO-suitable problem. The main idea
of ACO is to model a problem as the search for a
minimum cost path in a graph. Here nodes rep-
resent features, with the edges between them de-
noting the choice of the next feature. The search
for the optimal feature subset is then an ant traver-
sal through the graph where a minimum number
of nodes are visited that satisfies the traversal stop-
ping criterion. Figure 2 illustrates this setup. Nodes
are fully connected to allow any feature to be se-
lected next. The ant is currently at node a and has a
choice of which feature to add next to its path (dot-
ted lines). It chooses feature b next based on the
transition rule, then c and then d. Upon arrival at
d, the current subset {a, b, c, d} is determined to
satisfy the traversal stopping criterion (e.g. suitably
high verification quality has been achieved with this
subset). The ant terminates its traversal and outputs
this feature subset as a candidate for data reduction
[8].

On the basis of this reformulation of the graph
representation, the transition rules and pheromone
update rules of standard ACO algorithms can be ap-
plied. In this case, pheromone and heuristic value
are not associated with links. Instead, each feature
has its own pheromone value and heuristic value.

Figure 2. ACO problem representation for feature
selection

4.1.2 Heuristic Desirability

The basic ingredient of any ACO algorithm is
a constructive heuristic for probabilistically con-
structing solutions. A constructive heuristic as-
sembles solutions as sequences of elements from
the finite set of solution components. A solu-
tion construction starts with an empty partial so-
lution. Then, at each construction step the cur-
rent partial solution is extended by adding a fea-
sible solution component from the set of solution
components [33]. A suitable heuristic desirability
of traversing between features could be any sub-
set evaluation function for example, an entropy-
based measure [5] or rough set dependency mea-
sure [40]. In proposed algorithm verification qual-
ity is mentioned as heuristic information for feature
selection. The heuristic desirability of traversal and
node pheromone levels are combined to form the
so-called probabilistic transition rule, denoting the
probability that ant k will include feature i in its so-
lution at time step t:

Pk
i (t) =

{
[τi(t)]α.[ηi]

β

∑u∈Jk [τu(t)]α.[ηu]β
i f i ∈ Jk

0 otherwise
(6)

where, Jk is the set of feasible features that can be
added to the partial solution; τi and ηi are respec-
tively the pheromone value and heuristic desirabil-
ity associated with feature i. α and β are two pa-
rameters that determine the relative importance of
the pheromone value and heuristic information.

The transition probability used by ACO is a
balance between pheromone intensity (i.e. history
of previous successful moves), τi, and heuristic
information (expressing desirability of the move),
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structing solutions. A constructive heuristic as-
sembles solutions as sequences of elements from
the finite set of solution components. A solu-
tion construction starts with an empty partial so-
lution. Then, at each construction step the cur-
rent partial solution is extended by adding a fea-
sible solution component from the set of solution
components [33]. A suitable heuristic desirability
of traversing between features could be any sub-
set evaluation function for example, an entropy-
based measure [5] or rough set dependency mea-
sure [40]. In proposed algorithm verification qual-
ity is mentioned as heuristic information for feature
selection. The heuristic desirability of traversal and
node pheromone levels are combined to form the
so-called probabilistic transition rule, denoting the
probability that ant k will include feature i in its so-
lution at time step t:

Pk
i (t) =

{
[τi(t)]α.[ηi]

β

∑u∈Jk [τu(t)]α.[ηu]β
i f i ∈ Jk

0 otherwise
(6)

where, Jk is the set of feasible features that can be
added to the partial solution; τi and ηi are respec-
tively the pheromone value and heuristic desirabil-
ity associated with feature i. α and β are two pa-
rameters that determine the relative importance of
the pheromone value and heuristic information.

The transition probability used by ACO is a
balance between pheromone intensity (i.e. history
of previous successful moves), τi, and heuristic
information (expressing desirability of the move),
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ηi. This effectively balances the exploitation-
exploration trade-off. The best balance between
exploitation and exploration is achieved through
proper selection of the parameters α and β. If α=0,
no pheromone information is used, i.e. previous
search experience is neglected. The search then de-
grades to a stochastic greedy search. If β=0, the
attractiveness (or potential benefit) of moves is ne-
glected.

4.1.3 Pheromone Update Rule

After all ants have completed their solutions,
pheromone evaporation on all nodes is triggered,
and then according to equation (7) each ant k de-
posits a quantity of pheromone,∆τk

i (t), on each
node that it has used.

∆τk
i (t)=

{
ω.γ(Sk(t))+φ.(n/|Sk(t)|) i f i ∈ Sk(t)
0 otherwise

(7)
where Sk(t) is the feature subset found by ant k at
iteration t, and |Sk(t)|is its length. The pheromone
is updated according to both the measure of the ver-
ification quality,γ(Sk(t)), and feature subset length.
ω and φ are two parameters that control the rela-
tive weight of verification quality and feature sub-
set length, ω ∈[0,1] and φ = 1−ω. This formula
means that the verification quality and feature sub-
set length have different significance for feature se-
lection task. In our experiment we assume that
verification quality is more important than subset
length, so they were set as ω =0.7, φ=0.3.

In practice, the addition of new pheromone by
ants and pheromone evaporation are implemented
by the following rule applied to all the nodes:

τi(t +1) = (1−ρ)τi(t)+∆τg
i (t)+

m

∑
k=1

∆τk
i (t) (8)

where, m is the number of ants at each iteration
and ρ ∈(0,1) is the pheromone trail decay coeffi-
cient. The main role of pheromone evaporation is
to avoid stagnation, that is, the situation in which all
ants constructing the same solution. g indicates the
best ant at each iteration. All ants can update the
pheromone according to equation (8) and the best
ant deposits additional pheromone on nodes of the
best solution. This leads to the exploration of ants
around the optimal solution in next iterations.

4.1.4 Solution Construction

The overall process of ACO feature selection
can be seen in Figure 3. The process begins by
generating a number of ants which are then placed
randomly on the graph i.e. each ant starts with one
random feature. Alternatively, the number of ants
to place on the graph may be set equal to the num-
ber of features within the data; each ant starts path
construction at a different feature. From these ini-
tial positions, they traverse nodes probabilistically
until a traversal stopping criterion is satisfied. The
resulting subsets are gathered and then evaluated. If
an optimal subset has been found or the algorithm
has executed a certain number of times, then the
process halts and outputs the best feature subset en-
countered. If none of these conditions hold, then the
pheromone is updated, a new set of ants are created
and the process iterates once more.

Figure 3. Overall process of ACO for feature
selection in ASV

Typically an ASV system consists of several es-
sential parts including feature extraction and feature
selection. After preprocessing of speech signals,
feature extraction is used to transform the input sig-
nals into a feature set (feature vector). Feature se-
lection is applied to the feature set to reduce the di-
mensionality of it. ACO is used to explore the space
of all subsets of given feature set. The performance
of selected feature subsets is measured by invok-
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ing an evaluation function with the corresponding
reduced feature space and measuring the specified
verification result. The best feature subset found is
then output as the recommended set of features to
be used in the actual design of the ASV system.

The main steps of proposed feature selection al-
gorithm are as follows:

1. Initialization

– Determine the population of ants.

– Set the intensity of pheromone trial associ-
ated with any feature.

– Determine the maximum of allowed itera-
tions.

2. Solution generation and evaluation of ants

– Assign any ant randomly to one feature and
visiting features, each ant builds solutions
completely.

– In this step, the evaluation criterion is Equal
Error Rate (EER). If an ant is not able to de-
crease the EER in ten successive steps, it will
finish its work and exit.

3. Evaluation of the selected subsets

– Sort selected subsets according to verifica-
tion quality and their length. Then, select the
best subset.

4. Check the stop criterion

– Exit, if the number of iterations is more than
the maximum allowed iteration, otherwise
continue.

5. Pheromone updating

– Decrease pheromone concentrations of nodes
then, all ants deposit the quantity of
pheromone on graph.

– Finally, allow the best ant to deposit addi-
tional pheromone on nodes.

6. Generation of new ants

– In this step previous ants are removed and
new ants are generated.

7. Go to 2 and continue

5 Genetic Algorithms

The GAs are stochastic global search methods
that mimic the metaphor of natural biological evo-
lution [12]. These algorithms are general purpose
optimization algorithms with a probabilistic com-
ponent that provide a means to search poorly under-
stood, irregular spaces. Instead of working with a
single point, GAs work with a population of points.
Each point is a vector in hyperspace representing
one potential (or candidate) solution to the opti-
mization problem. A population is, thus, just an
ensemble or set of hyperspace vectors. Each vec-
tor is called a chromosome in the population. The
number of elements in each vector (chromosome)
depends on the number of parameters in the opti-
mization problem and the way to represent the prob-
lem. How to represent the problem as a string of el-
ements is one of the critical factors in successfully
applying a GA (or other evolutionary algorithm) to
a problem.

5.1 Genetic Algorithm for Feature Selec-
tion

Several approaches exist for using GAs for fea-
ture subset selection. The two main methods that
have been widely used in the past are as follow.
First is due to [13], of finding an optimal binary vec-
tor in which each bit corresponds to a feature (bi-
nary vector optimization (BVO) method). A ‘1’ or
‘0’ suggests that the feature is selected or dropped,
respectively. The aim is to find the binary vector
with the smallest number of 1’s such that the verifi-
cation quality is maximized. This criterion is often
modified to reduce the dimensionality of the fea-
ture vector at the same time [41]. The second and
more refined technique uses an m-ary vector to as-
sign weights to features instead of abruptly drop-
ping or including them as in the binary case [42].
This gives a better search resolution in the multidi-
mensional space [43].
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5.1 Genetic Algorithm for Feature Selec-
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Several approaches exist for using GAs for fea-
ture subset selection. The two main methods that
have been widely used in the past are as follow.
First is due to [13], of finding an optimal binary vec-
tor in which each bit corresponds to a feature (bi-
nary vector optimization (BVO) method). A ‘1’ or
‘0’ suggests that the feature is selected or dropped,
respectively. The aim is to find the binary vector
with the smallest number of 1’s such that the verifi-
cation quality is maximized. This criterion is often
modified to reduce the dimensionality of the fea-
ture vector at the same time [41]. The second and
more refined technique uses an m-ary vector to as-
sign weights to features instead of abruptly drop-
ping or including them as in the binary case [42].
This gives a better search resolution in the multidi-
mensional space [43].
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6 Experimental Results

A series of experiments was conducted to show
the utility of proposed feature selection algorithm.
All experiments have been run on a machine with
3.0GHz CPU and 512 MB of RAM. We implement
proposed ACO algorithm and GA-based feature se-
lection algorithm in Matlab R2006a. The operating
system was Windows XP Professional. The follow-
ing sections describe TIMIT dataset and implemen-
tation results.

6.1 TIMIT Dataset

The TIMIT corpus [44] is used in this paper.
This corpus contains 630 speakers (438 male and
192 female) representing 8 major dialect regions of
the country-regionplaceUnited States, each speak-
ing ten sentences. There are two sentences that are
spoken by all speakers and the remaining eight are
selected randomly from a large database.

The speech signal is recorded through a high
quality microphone with a sampling frequency of
16 kHz in a quiet environment, with no session in-
terval between recordings. Eight sentences (SX, SI)
were used to develop each speaker model, and the
remaining 2 SA sentences were used to test each
speaker. The 40 speakers included in both the test
and train directories were used during the TIMIT
(40) trials.

6.2 Evaluation Measure

The evaluation of the speaker verification sys-
tem is based on detection error tradeoff (DET)
curves, which show the tradeoff between false
alarm (FA) and false rejection (FR) errors. Typ-
ically equal error rate (EER), which is the point
on the curve where FA = FR, is chosen as evalua-
tion measure. We also used detection cost function
(DCF) defined as [45]:

DCF =Cmiss.FRR.Pt arget +CFA.FAR.(1−Pt arget)
(9)

where Ptarget is the priori probability of target tests
withPt arget = 0.01, FRR and FARare false rejection
rate and false acceptance rate respectively at an op-
erating point and the specific cost factors Cmiss =
10andCFA = 1. Hence, the point of interest is shifted
towards low FA rates.

6.3 Experimental Setup

Various values were tested for the parameters
of proposed algorithm. The results show that the
highest performance is achieved by setting the pa-
rameters to values shown in Table 1.

Experiments were conducted on a subset of
TIMIT corpora consist of 24 male and 16 female
speakers of different accent that were selected ran-
domly. Data were processed in 20 ms frames (320
samples) with 50% overlaps. Frames were seg-
mented by Hamming window and pre-emphasized
with α = 0.97to compensate the effect of micro-
phone’s low pass filter. At first, feature vector was
created by extracting MFCCs from silence removed
data for each frame. In the next step, delta coeffi-
cients were calculated based on the MFCCs and ap-
pended to existing feature vector. Furthermore, two
energies were applied to input vectors as described
earlier. Then we consider the LPCCs and their
delta coefficients respectively and append them to
the feature vector. The final feature set contains F
= 50 features. Table 2 shows the overall set of fea-
tures.

Finally, verification process was performed us-
ing the GMM-UBM approach. The performance
criterion is due to EER and DCF according to an
adopted decision threshold strategy.

6.4 Results and discussion

The feature subset length and verification qual-
ity are two criteria which are considered to assess
the performance of algorithms. Comparing the first
criterion, we noted that both ACO-based and GA-
based algorithms reduce the dimensionality of fea-
ture space. Furthermore, the ACO-based algorithm
selected a smaller subset of features than the GA-
based algorithm. Table 3 shows the number of se-
lected features by ACO-based and GA-based ap-
proaches. As we can see in Table 3, ACO can de-
grade dimensionality of features over 80%.

The second performance criterion is due to EER
and DCF according to an adopted decision thresh-
old strategy. The EER and DCF for GMM-UBM,
GA-based and ACO-based algorithms with differ-
ent number of Gaussian (16, 32 and 64) were shown
in Table 4.

Ideally the number of mixtures, M, should ap-
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Population Iteration Crossover Mutation Initial α β ρ
probability probability pheromone

GA 30 50 0.7 0.005 - - - -
ACO 30 50 - - 1 1 0.1 0.2

Table 1. GA and ACO parameter settings

Feature Name Order
Mel Frequency Cepstral Coefficient (MFCC) 12

Linear Prediction Cepstral Coefficient (LPCC) 12
First diff of MFCC (∆−MFCC) 12
First diff of LPCC(∆−LPCC) 12

Energy 2
Total 50

Table 2. The overall feature set

Selection Method Number of Selected Percentages of Selected
Selection Method Features Features

GA- GMM-UBM(16) 16 32%
GA-GMM-UBM(32) 17 34%
GA-GMM-UBM(64) 16 32%

ACO-GMM-UBM(16) 10 20%
ACO-GMM-UBM(32) 9 18%
ACO-GMM-UBM(64) 10 20%

Table 3. Selected features of GA and ACO

Number GMM-UBM GA ACO
of Gaussians EER DCF EER DCF EER DCF

16 5.08 0.0563 4.966 0.0554 4.318 0.0401
32 4.56 0.0505 3.679 0.0389 2.634 0.0309
64 6.667 0.0707 4.961 0.0532 4.23 0.0386

Table 4. EER and DCF for GMM-UBM, GA-based and ACO-based algorithms with different number of
Gaussians
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Population Iteration Crossover Mutation Initial α β ρ
probability probability pheromone
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proximate the number of natural classes in data.
If M is less than the number of natural classes,
closely placed clusters will fuse to form larger clus-
ters whose variance is higher. This results in a
larger percentage of frames, both the true speaker
and imposter, getting average scores. The perfor-
mance goes down because these frames cannot be
discriminated. This is a case of trying to under-fit
training data. When M is more than the number
of natural classes, larger clusters are broken up into
smaller sub-clusters or spurious frames get repre-
sented as separate clusters. The new clusters will
have lower variance. This would lead to increase
in average and low scoring frames and hence would
lead to lower performance. This is a case of trying
to over-fit training data. As could be seen in Table
4, speaker verification performance is found to in-
crease as M is increased but begins to drop after a
point at which over-fitting starts taking place.

Figure 4. DET curves for CityplaceGMM-UBM,
StateGA and ACO with 16 Gaussians

Figure 5. DET curves for CityplaceGMM-UBM,
StateGA and ACO with 32 Gaussians

DET curves for GA-based and ACO-based al-
gorithms with 16, 32 and 64 Gaussians are shown
in Figure 4 through 6. From the results, it can be
seen that ACO-GMM-UBM yields a significant im-
provement in speed than the baseline GMM-UBM
approach. The improvement is due to the selection
of optimal feature set by ACO algorithm.

To further highlight the search process, we
graph percent selected features of every ant’s cur-
rent iteration (horizontal coordinate) against ver-
ification performance (vertical coordinate). Each
point in the figure is an ant. The process of the ant
colony searching for optimal solutions for TIMIT
dataset is given in Figures 7(a) through 7(f).

Figure 6. DET curves for CityplaceGMM-UBM,
StateGA and ACO with 64 Gaussians

From the results and figures, we can see that,
compared with GA, ACO is quicker in locating the
optimal solution. In general, it can find the opti-
mal solution within tens of iterations. If exhaustive
search is used to find the optimal feature subset in
the TIMIT dataset, there will be tens of billions of
candidate subsets, which is impossible to execute.
But with ACO, at the 50th iteration the optimal so-
lution is found.

Ant colony optimization has powerful explo-
ration ability; it is a gradual searching process that
approaches optimal solutions. The running time of
ACO is affected more by the problem dimension
(feature numbers), and the size of data. For some
datasets with more features, after finding a sub-
optimal solution, the GA cannot find a better one.
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Figure 7. (a) Iteration 1 of ACO on TIMIT dataset; (b) Iteration 10 of ACO on TIMIT dataset; (c) Iteration
20 of ACO on TIMIT dataset; (d) Iteration 30 of ACO on TIMIT dataset; (e) Iteration 40 of ACO on

TIMIT dataset; (f) Iteration 50 of ACO on TIMIT dataset

(a)

(c)

(e)

(b)

(d)

(f)
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Figure 7. (a) Iteration 1 of ACO on TIMIT dataset; (b) Iteration 10 of ACO on TIMIT dataset; (c) Iteration
20 of ACO on TIMIT dataset; (d) Iteration 30 of ACO on TIMIT dataset; (e) Iteration 40 of ACO on

TIMIT dataset; (f) Iteration 50 of ACO on TIMIT dataset
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However, ACO can search in the feature space until
the optimal solution is found. The GA is affected
greatly by the number of features.

Ant colony optimization comprises a very sim-
ple concept, and the ideas can be implemented in a
few lines of computer code. It requires only prim-
itive mathematical operators, and is computation-
ally inexpensive in terms of both memory require-
ments and speed. This optimization technique does
not suffer, however, from some of the difficulties of
GAs; interaction in the colony enhances rather than
detracts from progress toward the solution. Fur-
ther, an ant colony system has memory, which the
genetic algorithm does not have. Changes in ge-
netic populations result in the destruction of previ-
ous knowledge of the problem. In ant colony opti-
mization, ants that past optima are tugged to return
towards them; knowledge of good solutions is re-
tained by all ants.

7 Conclusion

In this paper, we have addressed the problem
of optimizing the acoustic feature set by ACO tech-
nique for text-independent speaker verification sys-
tem based on GMM-UBM. Ant colony optimiza-
tion selected the relevant features among all Mel-
cepstrum coefficients in order to increase the per-
formance of our ASV system. We compare its per-
formance with another prominent population-based
feature selection method, genetic algorithm. The
experimental results on subset of TIMIT database
showed that ACO is able to select the more in-
formative features without loosing the performance
than GA. The feature vectors size reduced over 80%
which led to a less complexity of our ASV sys-
tem. Moreover, verification process in the test phase
speeds up because less complexity is achieved by
the proposed system in comparison with current
ASV systems.

Ant colony optimization has the ability to con-
verge quickly; it has a strong search capability in
the problem space and can efficiently find minimal
feature subset. Experimental results demonstrate
competitive performance. More experimentation
and further investigation into this technique may
be required. The pheromone trail decay coefficient
(ρ) and pheromone amount (∆τk

i (t)) have an impor-
tant impact on the performance of ACO. The selec-

tion of the parameters may be problem-dependent.
The deposited pheromone,∆τk

i (t), calculated using
equation (7), expresses the quality of the corre-
sponding solution. ρ simulates the pheromone
evaporation. Evaporation becomes more impor-
tant for more complex problems. If ρ=0, i.e. no
evaporation, the algorithm does not converge. If
pheromone evaporates too much (a large ρ is used),
the algorithm often converged to sub-optimal solu-
tions for complex problem. In many practical prob-
lems, it’s difficult to select the best ρ without trial-
and-error. α and β are also key factors in ACO for
feature selection.
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