Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Global climate change is a fact that affects all components of the environment. The main aim of this research was to conduct the retrospective monitoring of soils in the Trans-Ural Steppe Zone (Russia) and the analysis in changing of key climatic parameters for the periods 1937-1982 and 1982-2019. We investigated average temperatures and precipitation (monthly and annual) using archived data from a nearby weather station, as well as data from NASA and weather forecast websites. We identified a decrease of soil fertility and an increase in alkalinisation processes over the past 37 years for the studied area. Comparison of these periods showed an increasing the average monthly and annual air temperatures (on 1.4°C) and a decrease in the amount of precipitation in the summer (on 4.4 mm) period. We found that a more arid climate accelerates the rate of soil salinization due to the active evaporation of groundwater. Nevertheless, in some areas there were found the soil desalinization due to the change in the hydrologic regime and lowering of the groundwater level. In general, the climate changing in the studied region is consistent with global warming trend. Increased average annual temperature and reduced precipitation in summer period contribute to aridization of the region. Such conditions will more restrict soil fertility due to development of salinization and desertification processes.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
84--90
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Ufa Institute of Biology, Ufa Research Center, Russian Academy of Sciences, Laboratory of Soil Science, Pr. Oktyabrya 69, 450054, Ufa, Russia
- Ufa State Petroleum Technological University, Department of Environmental Protection and Prudent Exploitation of Natural Resources, Kosmonavtov St 1, 450064, Ufa, Russia
autor
- Ufa Institute of Biology, Ufa Research Center, Russian Academy of Sciences, Laboratory of Soil Science, Pr. Oktyabrya 69, 450054, Ufa, Russia
autor
- Ufa Institute of Biology, Ufa Research Center, Russian Academy of Sciences, Laboratory of Soil Science, Pr. Oktyabrya 69, 450054, Ufa, Russia
- Bashkir State University, Department of Geodesy, Cartography and Geographic Information Systems, Ufa, Russia
autor
- Ufa Institute of Biology, Ufa Research Center, Russian Academy of Sciences, Laboratory of Soil Science, Pr. Oktyabrya 69, 450054, Ufa, Russia
autor
- Ufa Institute of Biology, Ufa Research Center, Russian Academy of Sciences, Laboratory of Soil Science, Pr. Oktyabrya 69, 450054, Ufa, Russia
autor
- Ufa Institute of Biology, Ufa Research Center, Russian Academy of Sciences, Laboratory of Soil Science, Pr. Oktyabrya 69, 450054, Ufa, Russia
autor
- Ufa Institute of Biology, Ufa Research Center, Russian Academy of Sciences, Laboratory of Soil Science, Pr. Oktyabrya 69, 450054, Ufa, Russia
Bibliografia
- ABDRAKHMANOV R.F., POPOV V.G. 2010. Geohimiya i formirovaniye podzemnykh vod Yuzhnogo Urala [Geochemistry and groundwater formation in the South Urals]. Ed. V.N. Puchkov. Ufa. Gilem. ISBN 978-5-7501-1165-7 pp. 420.
- ARINUSHKINA E.V. 1970. Rukovdstvo po khimicheskomu analizu pochv [Soil chemical analysis guide]. Ed. A.I. Busev. Moscow. Izd-vo MU pp. 488.
- ASYLBAEV I., KHABIROV I., KHASANOV A., GABBASOVA I., GARIPOV T. 2020. Temporal change of soil chemical properties in the southern forest-steppe of the Ufa region of the Republic of Bashkortostan, Russia. Journal of Water and Land Development. No. 44 p. 8–12. DOI 10.24425/jwld.2019.127039.
- BAGARELLO V., FERRO V., KEESSTRA S., RODRIGO COMINO J., PULIDO M., CERDÀ A. 2018. Testing simple scaling in soil erosion processes at plot scale. Catena. Vol. 167 p. 171–180. DOI 10.1016/j.catena.2018.04.035.
- BOGOMOLOV D.V. 1954. Pochvy Bashkirskoy ASSR [Soils of the Bashkir ASSR]. USSR Academy of Sciences pp. 296.
- BULCHUK P.Y. 1973. Solontsy, solontsevatye i solonchakovye pochvy. V: Pochvy Bashkirii [Solontsy, saline and solonchak soils. In: Soils of Bashkiria]. Vol. 1. Ufa. Rossiiskaya Akademiya Nauk p. 350–383.
- CHAIEB G., ABDELLY C., MICHALET R. 2019. Interactive effects of climate and topography on soil salinity and vegetation zonation in North-African continental saline depressions. Journal of Vegetation Science. Vol. 30(2) p. 312–321. DOI 10.1111/jvs.12693.
- CORWIN D.L. 2021. Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science. Vol. 72(2) p. 842–862. DOI 10.1111/ejss.13010.
- GABBASOVA I.M., GARIPOV T.T., KOMISSAROV M.A., SULEIMANOV R.R., SUYUNDUKOV Y A. T., KHASANOVA R.F., SIDOROVA L.V., KOMISSAROV A.V., SULEIMANOV A.R., NAZYROVA F.I. 2019. The impact of fires on the properties of steppe soils in the Trans-Ural region. Eurasian Soil Science. Vol. 52(12) p. 1598–1607. DOI 10.1134/S1064229319120044.
- GILE L.H., MONGER H.C., GROSSMAN R.B., AHRENS R.J., HAWLEY J.W., PETERSON F.F., GIBBENS R.P., LENZ J.M., BESTELMEYER BT, NOLEN B. 2007. A 50th anniversary guidebook for the Desert Project. Lincoln, NE. U.S. Department of Agriculture pp. 279.
- GREGORY A.S., RITZ K., MC GRATH S.P., QUINTON J.N., GOULDING K.W.T., JONES R.J.A., ... WHITMORE A.P. 2015. A review of the impacts of degradation threats on soil properties in the UK. Soil Use and Management. Vol. 31(S1) p. 1–15. DOI 10.1111/sum.12212.
- HAJ-AMOR Z., BOURI S. 2020. Use of HYDRUS-1D–GIS tool for evaluating effects of climate changes on soil salinization and irrigation management. Archives of Agronomy and Soil Science. Vol. 66(2) p. 193–207. DOI 10.1080/03650340.2019.1608438.
- IPCC 2019. Global Warming of 1.5 °C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [online]. Eds. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield. Geneva. Intergovernmental Panel on Climate Change pp. 616. [Access 15.01.2020]. Available at: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Re-port_High_Res.pdf
- IUSS Working Group WRB 2015. World reference base for soil resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports. No. 106. Rome. FAO. ISBN 978-92-5-130064-0 (FAO) pp. 192
- KATTSOV V.M. (ed.) 2017. Doklad o klimaticheskih riskah na territorii Rossiiskoy Federatsii [Report on climatic risks in the Russian Federation]. Saint Petersburg. ROSGIDROMET. ISBN 978-9500833-1-5 pp. 106.
- KOMISSAROV A., SAFIN K H., ISHBULATOV M., KHAFIZOV A., KOMISSAROV M. 2019. Irrigation as means to reduce the risks of agricultural production in the South Ural [online]. Bulgarian Journal of Agricultural Science. Vol. 25. Suppl. 2 p. 149–157. [Access 15.01.2020]. Available at: https://www.agrojournal.org/25/02s-18.pdf
- LIBUTTI A., CAMMERINO A.R.B., MONTELEONE M. 2018. Risk assessment of soil salinization due to tomato cultivation in Mediterranean climate conditions. Water. Vol. 10(11), 1503. DOI 10.3390/w10111503.
- MA X., ZHU J., YAN W., ZHAO C. 2021. Projections of desertification trends in Central Asia under global warming scenarios. Science of The Total Environment. Vol. 781, 146777. DOI 10.1016/j.scitotenv.2021.146777.
- MAMONTOV V.G. 2002. Interpretatsiya dannykh po otboru vody iz zasolennykh pochv [Interpretation of water extraction data from saline soils]. Moscow. A.K. Timiryazev Agricultural Academy pp 37.
- NASA undated. GISS Surface Temperature Analysis (v4) [online]. Washington. National Aeronautics and Space Administration. [Access 07.07.2020]. Available at: https://data.giss.nasa.gov/gis-temp/station_data_v4_globe/#form
- NASRI N., BOUHLILA R., SAALTINK M.W., GAMAZO P. 2015. Modeling the hydrogeochemical evolution of brine in saline systems: Case study of the Sabkha of Oum El Khialate in South East Tunisia. Applied Geochemistry. Vol. 55 p. 160–169. DOI 10.1016/j.apgeochem.2014.11.003.
- PANKOVA E.I., AIDAROV I.P., GOLOVANOV D.L., YAMNOVA I.A. 2015. Salinization as the main soil-forming process in soils of natural oases in the Gobi desert. Eurasian Soil Science. Vol. 48(10) p. 1017–1028. DOI 10.1134/S1064229315100087.
- PANKOVA E.I., AIDAROV I.P., YAMNOVA I.A., NOVIKOVA A.F., BLAGOVOLIN N.S. 1996. Yestestvennoye i antropogennoye zasoleniye pochv basseyna Aral’skogo morya (geografiya, genezis, evolyutsiya) [Natural and anthropogenic salinization of soils in the Aral Sea basin (geography, genesis, evolution)]. Moskva. Pochvennyy institut imeni V.V. Dokuchayeva pp. 187.
- Pogoda i klimat [undated]. Akyar [Akyar] [online]. [Access 15.09.2020]. Available at: http://www.pogodaiklimat.ru/weather.php?id=35037
- RAKHIMOVA M., LIU T., BISSENBAYEVA S., MUKANOV Y., GAFFOROV K.S., BEKPERGENOVA Z., GULAKHMADOV A. 2020. Assessment of the impacts of climate change and human activities on runoff using climate elasticity method and general circulation model (GCM) in the Buqtyrma River Basin, Kazakhstan. Sustainability. Vol. 12 (12) p. 4968. DOI 10.3390/su12124968.
- SCHOFIELD R.V., KIRKBY M.J. 2003. Application of salinization indicators and initial development of potential global soil salinization scenario under climatic change. Global Biogeochemical Cycles. Vol. 17(3), 1073. DOI 10.1029/2002GB001935.
- SHISHOV L.L., PANKOVA E.I. (ed.) 2006. Zasolennye pochvy Rossii [Salt-affected soils of Russia]. Moscow. Akademkniga. ISBN 5-94628-198-4 pp. 854.
- SOBOL N.V. 2016. Razvitiye erozionnykh processov v izmenyauschikhsya klimaticheskikh usloviyakh Yuzhno-Ural’skogo regiona [Development of erosion processes in the changing climatic conditions of the South-Ural region]. PhD thesis. Ufa, Russia. Ufa Institute of Biology, UFRC RAS pp. 150.
- SOBOL N.V., GABBASOVA I.M., KOMISSAROV M.A. 2015. Impact of climate changes on erosion processes in Republic of Bashkortostan. Arid Ecosystems. Vol. 5(4) p. 216–221. DOI 10.1134/S2079096115040137.
- SOKOLOV A.V. (ed.) 1975. Agrohimicheskiye metody issledovaniya pochv [Agrochemical methods of soil studies]. Moscow. Nauka pp. 656.
- SOLANGI G.S., SIYAL A.A., SIYAL P. 2019. Spatiotemporal dynamics of land surface temperature and its impact on the vegetation. Civil Engineering Journal. Vol. 5(8) p. 1753–1763. DOI 10.28991/cej-2019-03091368.
- SULEYMANOV A., ABAKUMOV E., SULEYMANOV R., GABBASOVA I., KOMISSAROV M. 2021a. The soil nutrient digital mapping for precision agriculture cases in the Trans-Ural steppe zone of Russia using topographic attributes. ISPRS International Journal of Geo-Information. Vol. 10(4), 243. DOI 10.3390/ijgi10040243.
- SULEYMANOV A., GABBASOVA I., ABAKUMOV E., KOSTECKI J. 2021b. Soil salinity assessment from satellite data in the Trans-Ural steppe zone (Southern Ural, Russia). Soil Science Annual. Vol. 72(1), 132233. DOI 10.37501/soilsa/132233.
- WILFORD J., DE CARITAT P., BUI E. 2015. Modelling the abundance of soil calcium carbonate across Australia using geochemical survey data and environmental predictors. Geoderma. Vol. 259 p. 81–92. DOI 10.1016/j.geoderma.2015.05.003.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2c65c48-89f2-47bc-bb72-3a1c351180ff