PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization in fuzzy economic order quantity (FEOQ) model with promotional effort cost and units lost due to deterioration

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Optymalizacja modelu rozmytej ekonomicznej wielkości zamówienia z efektem promocyjnym i stratą spowodowaną zniszczeniem
Języki publikacji
EN
Abstrakty
EN
Background: This model presents a significant model for analyzing the effect of deteriorating items and promotional effort in fuzzy optimal instantaneous replenishment model for finite planning horizon. Accounting for holding cost per unit per unit time and ordering cost per order have traditionally been the case of modeling inventory systems in fuzzy environment. These imprecise parameters defined on a bounded interval on the axis of real numbers and the physical characteristics of stocked items dictate the nature of inventory policies implemented to manage and control in the production system. Methods: This model postulates the promotional effort cost to frame total inventory cost. Thus a modified fuzzy EOQ (FEOQ) model with promotional effort factor is introduced, it assumes that a percentage of the on-hand inventory is wasted due to deterioration and considered as an enhancement to EOQ model to determine the optimal promotional effort and the replenishment quantity so that the net profit is maximized. In theoretical analysis, the necessary and sufficient conditions of the existence and uniqueness of the optimal solutions are proved and further the concavity of the fuzzy net profit function is established. Computational algorithm using the software LINGO 13.0 version is developed to find the optimal solution. Results and conclusions: The results of the numerical analysis enable decision-makers to quantify the effect of promotion policy on optimizing the net profit for the retailer and wasting the percentage of on-hand inventory due to deterioration respectively. Finally, sensitivity analyses of the optimal solution with respect the major parameters are also carried out. Furthermore fuzzy decision making is shown to be superior then crisp decision making without promotional effort in terms of profit maximization.
PL
Wstęp: Tematem pracy jest model istotności służący do analizy efektów zniszczenia towarów oraz efektu promocyjnego w modelu rozmytym ciągłego uzupełniania w określonym horyzoncie czasu. Głównym parametrem tworzenia modelu zarządzania zapasem w rozmytym środowisku jest zazwyczaj koszt jednostkowy na jednostkę zamówienia w określonej jednostce czasu. Te nieprecyzyjne parametry, oparte o oś liczb rzeczywistych, tworzą otoczenie, w którym stosuje się system zarządzania zapasem. Metody: Model określa wpływ promocyjny na całkowity koszt zapasu. W tym celu został stworzony rozmyty model ekonomicznej wielkości zakupu uwzględniający efekt promocyjny oraz procentowe zniszczenie zapasu, tak, aby osiągnąć maksymalny zysk netto. W trakcie analizy teoretycznej, niezbędne i wystarczające warunki istnienia i unikalności rozwiązań optymalizacyjnych wykazały słuszność dalszych badań nad funkcją rozmytej zyskowności netto. W celu znalezienie optymalnego rozwiązania stworzono algorytm przy użyciu oprogramowania LINGO 13.0. Wyniki i wnioski: Wyniki analizy numerycznej umożliwiają oszacowanie efektu polityki promocyjnej na optymalizację zysku netto dla detalisty jak również poziomu zniszczeń towaru. Również zostały przeprowadzone analizy wrażliwości uwzględniające najważniejsze parametry, które wykazały celowość stosowania proponowanej metody dla maksymalizacji zysku przy uwzględnieniu efektu promocyjnego.
Czasopismo
Rocznik
Strony
61--76
Opis fizyczny
Bibliogr. 48 poz., rys., tab., wykr.
Twórcy
autor
  • Dept. of Business Administration, Sambalpur University, Jyotivihar, Burla Sambalpur, India
autor
  • Dept. of Business Administration, Sambalpur University, Jyotivihar, Burla Sambalpur, India
Bibliografia
  • 1. Bose S., Goswami A., Chaudhuri K.S., 1995. An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting. J. of Oper. Res. Soc., 46, 775-782.
  • 2. Goyal S.K., Giri, B.C. 2001. Recent trends in modeling of deteriorating inventory. Euro. J.of Oper.Res., 134, 1-16.
  • 3. Goyal S.K., Gunasekaran A., 1995. An integrated production-inventory-marketing model for deteriorating items. Comp. and Ind.Eng., 28, 755-762.
  • 4. Gupta D., Gerchak Y., 1995. Joint product durability and lot sizing models. Euro. J. of Oper. Res., 84, 371-384.
  • 5. Hariga M., 1995. An EOQ model for deteriorating items with shortages and timevarying demand. J. of Oper. Res. Soc., 46, 398-404.
  • 6. Hariga M., 1996. An EOQ model for deteriorating items with time-varying demand. J. of Oper. Res. Soc., 47, 1228-1246.
  • 7. Hariga M., 1994. Economic analysis of dynamic inventory models with nonstationary costs and demand. Inter. J. of Prod. Econ., 36, 255-266.
  • 8. Jain K., Silver E., 1994. A lot sizing for a product subject to obsolescence or perishability. Euro. J. of Oper. Res., 75, 287-295.
  • 9. Mahata G.C., Goswami A., 2006. Production lot size model with fuzzy production rate and fuzzy demand rate for deteriorating item under permissible delay in payments. J. of Oper. Res. Soc .India, 43, 359-375.
  • 10. Osteryoung J.S., Mc Carty D.E., Reinhart W.L., 1986. Use of EOQ models for inventory analysis. Prod. and Inv.Mgmt., 3rd Qtr: 39-45.
  • 11. Padmanabhan G., Vrat P., 1995. EOQ models for perishable items under stock dependent selling rate. Euro.J. of Oper. Res., 86, 281-292.
  • 12. Pattnaik M., 2013. A Framework of Dynamic Ordering Cost with Units Lost due to Deterioration in an Instantaneous Economic Order Quantity Model. Journal of Supply Chain and Operations Management, in press.
  • 13. Pattnaik M., 2012. A Note on Non Linear Profit-Maximization Entropic Order Quantity (EnOQ) Model for Deteriorating Items with Stock Dependent Demand Rate. Oper. and Sup. Chain Mgmt., 5(2), 97-102.
  • 14. Pattnaik M., 2011. A note on optimal inventory policy involving instant deterioration of perishable items with price discounts. The J. of Math. and Comp. Sc., 3(2), 145-155.
  • 15. Pattnaik M., 2013. A note on profit-Maximization Fuzzy EOQ Models for Deteriorating Items with Two Dimension Sensitive Demand. Inter. J. of Mgmt. Sc. and Eng. Mgmt., in press.
  • 16. Pattnaik M., 2010. An entropic order quantity (EnOQ) model under instant deterioration of perishable items with price discounts, Inter. Math. For., 5(52), 2581-2590.
  • 17. Pattnaik M., 2011. An entropic order quantity (EnOQ) model with post deterioration cash discounts. Inter. J. of Cont. and Math. Sc., 6(19), 931-939.
  • 18. Pattnaik M., 2012. An EOQ model for perishable items with constant demand and instant Deterioration. Dec., 39(1), 55-61.
  • 19. Pattnaik M., 2011. Entropic order quantity (EnOQ) model under cash discounts. Thai. Stat. J., 9(2), 129-141.
  • 20. Pattnaik M., 2013. Fuzzy Multi-objective Linear Programming Problems: A Sensitivity Analysis. The J. of Math. And Comp. Sc., 7(2), 131-137.
  • 21. Pattnaik M., 2013. Fuzzy NLP for a Single Item EOQ Model with Demand - Dependent Unit Price and Variable Setup Cost. World J. of Model. and Simu., 9(1), 74-80.
  • 22. Pattnaik M., 2013. Fuzzy Supplier Selection Strategies in Supply Chain Management. Inter. J. of Sup. Ch. Mgmt., 2(1), 30-39.
  • 23. Pattnaik M., 2013. Linear Programming Problems in Fuzzy Environment: The Post Optimal Analyses. J. of Uncer. Sys., in press.
  • 24. Pattnaik M., 2012. Models of inventory control. Lamb. Acad. Pub., Germany.
  • 25. Pattnaik M., 2013. Optimal Decision-Making in Fuzzy Economic Order Quantity (EOQ) Model under Restricted Space: A Non-Linear Programming Approach. Inter. J. of Anal. and Appl., in press.
  • 26. Pattnaik M., 2013. Optimization in an Instantaneous Economic Order Quantity (EOQ) Model Incorporated with Promotional Effort Cost, Variable Ordering Cost and Units Lost due to Deterioration. Uncer. Sup. Ch. Mgmt., 1(2), 57-66.
  • 27. Pattnaik M., 2013. Skilled Manpower Selection for Micro, Small and Medium enterprises: A Fuzzy Decision Making Approach. Oper. and Sup. Ch. Mgmt., 6(2), 64-74.
  • 28. Pattnaik M., 2011. Supplier Selection Strategies on Fuzzy Decision Space. Gen. Math. Notes., 4(1), 49-69.
  • 29. Pattnaik M., 2012. The effect of promotion in fuzzy optimal replenishment model with units lost due to deterioration. Inter. J. of Mgmt. Sc. and Eng. Mgmt., 7(4), 303-311.
  • 30. Pattnaik M., 2013. The Effect of Units Lost due to Deterioration in Fuzzy Economic Order Quantity (FEOQ) Model. Inter. J. of Anal. and Appl., 1(2), 128-146.
  • 31. Pattnaik M., 2013. Wasting of Percentage Onhand Inventory of an Instantaneous Economic Order Quantity Model due to Deterioration. The J. of Math. and Comp. Sc., 7(3), 154-159.
  • 32. Raafat F., 1991. Survey of literature on continuously deteriorating inventory models. J. of Oper. Res. Soc., 42, 89-94.
  • 33. Sahoo P.K., Pattnaik M., 2013. Decision Making Approach to Fuzzy Linear Programming (FLP) Problems with Post Optimal Analysis. Inter. J. of Oper. Res. and Inf. Sys., in press.
  • 34. Sahoo P.K., Pattnaik M., 2013. Linear Programming Problem and Post Optimality Analyses in Fuzzy Space: A Case Study of a Bakery Industry. J. of Bus. and Mgmt. Sc., 1(3), 36-43.
  • 35. Salameh M.K., Jaber M.Y., Noueihed N., 1993. Effect of deteriorating items on the instantaneous replenishment model. Prod. Plan. and Cont., 10(2), 175-180.
  • 36. Shah N., 2000. Literature survey on inventory models for deteriorating items. Econ. Annals., 44, 221-237.
  • 37. Tripathy P.K., Pattnaik M., 2011. A fuzzy arithmetic approach for perishable items in discounted entropic order quantity model. Inter. J. of Sc. Stat. Comp., 1(2), 7-19.
  • 38. Tripathy P.K., Pattnaik M., 2011. A nonrandom optimization approach to a disposal mechanism under flexibility and reliability criteria. The Open Oper. Res. J., 5, 1-18.
  • 39. Tripathy P.K., Pattnaik M., 2008. An entropic order quantity model with fuzzy holding cost and fuzzy disposal cost for perishable items under two component demand and discounted selling price. Pak. J. of Stat. and Oper. Res., 4(2), 93-110.
  • 40. Tripathy P.K., Pattnaik M., 2013. Fuzzy Supplier Selection Strategies in Supply Chain Management. Inter. J. of Sup.Ch. Mgmt., 2(1), 30-39.
  • 41. Tripathy P.K., Pattnaik M., 2009. Optimal disposal mechanism with fuzzy system cost under flexibility & Reliability criteria in non-random optimization environment. Appl. Math. Sc., 3(37), 1823-1847.
  • 42. Tripathy P.K., Pattnaik M., 2011. Optimal inventory policy with reliability consideration and instantaneous receipt under imperfect production process. Inter. J. of Mgmt. Sc. and Eng. Mgmt., 6(6), 412-420.
  • 43. Tripathy P.K., Pattnaik M., Tripathy P., 2012. Optimal EOQ Model for Deteriorating Items with Promotional Effort Cost. Amer. J. of Oper. Res., 2(2), 260-265.
  • 44. Tripathy P.K., Tripathy P., Pattnaik M., 2011. A Fuzzy EOQ Model with Reliability and Demand-dependent Unit Cost. Inter J. of Cont. Math. Sc., 6(30), 1467-1482.
  • 45. Tsao Y.C., Sheen G.J., 2008. Dynamic pricing, promotion and replenishment policies for a deteriorating item under permissible delay in payment. Comp. and Oper. Res., 35, 3562-3580.
  • 46. Vujosevic M., Petrovic D., Petrovic R., 1996. EOQ formula when inventory cost is fuzzy. Inter. J. of Prod. Econ., 45, 499-504.
  • 47. Waters C.D.J., 1994. Inventory Control and Management. (Chichester: Wiley).
  • 48. Wee H.M., 1993. Economic Production lot size model for deteriorating items with partial back-ordering. Comp. and Ind. Eng., 24, 449-458.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2c6022e-f7d0-4f3f-80f7-1e863ac1f217
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.