PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Standalone brushless motor module optimized for legged robots

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main focus of the article is an advanced actuator, designed and optimized for small dynamic legged robots. The presented actuator prototype is unique, as the market lacks similar solutions when dimensions and weight of the module are considered. The actuator has a modular structure, which makes it easy to replace in case of malfunction and simplifies the overall structure of the robot. High torque bandwidth, achieved by the module, is crucial to agile locomotion, obstacle avoidance and push recovery of the quadrupedal robot. The Authors have conducted a solution review aimed at similar small-size modules. It was found that there are no advanced actuators suitable for sub 5 kg quadruped robots. The unique design presented in this paper is described in all three aspects: mechanical, electrical and software. The mechanical section depicts the solutions implemented in the module, especially the low gear ratio gearbox. The custom brushless motor driver is presented in the electrical section, together with detailed diagrams and hardware descriptions. The last section depicts solutions implemented in the software, the main motor control algorithm and auxiliary modules such as automatic motor parameter identification and encoder misalignment correction. Tests performed in the last part of this paper validated the design goals established for the actuator. The results confirmed the high torque capability and exhibited the motor saturation region. Continuous and peak torque were measured based on the thermal characteristics of the module. Moreover, the automatic motor parameter identification process carried out by the controller itself was validated by manual measurements.
Rocznik
Strony
art. no. e141008
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Bialystok University of Technology, Faculty of Electrical Engineering, Wiejska 45D, 15-351 Bialystok, Poland
  • Bialystok University of Technology, Faculty of Mechanical Engineering, Department of Robotics and Mechatronics, Wiejska 45C, 15-351 Bialystok, Poland
Bibliografia
  • [1] C. Semini, N. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. Caldwell, “Design of HyQ -a hydraulically and electrically actuated quadruped robot,” Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 225, no. 6, pp. 831–849, 2011, doi: 10.1177/0959651811402275.
  • [2] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “Bigdog, the rough-terrain quadruped robot,” IFAC Proc., vol. 41, no. 2, pp. 10822–10825, 2008, doi: 10.3182/20080706-5-KR-1001.01833.
  • [3] Boston dynamics company webpage. [Online]. Available: https:// www.bostondynamics.com. [Accessed: 08.11.2021].
  • [4] DailyMail. “Boston Dynamics robot dog inspects SpaceX site Texas.” [Online]. Available: https://www.dailymail.co.uk/sciencetech/article-8458885/Boston-Dynamics-robot-dog-inspects-SpaceX-site-Texas.html. [Accessed: 08.11.2021].
  • [5] BBC news. “Coronavirus: Robot dog enforces social distancing in Singapore park.” [Online]. Available: https://www.bbc.com/news/av/technology-52619568. [Accessed on 08.11.2021].
  • [6] S. Seok, A.Wang, C.M. Yee, D. Otten, J. Lang, and S. Kim, “Design principles for highly efficient quadrupeds and implementation on the MIT Cheetah robot,” International Conference on Robotics and Automation, Karlsruhe, Germany, 2013, pp. 3307–3312, doi: 10.1109/ICRA.2013.6631038.
  • [7] MIT Biomimetic Robotics Lab. “Optimal actuator design.” [Online]. Available: https://biomimetics.mit.edu/research/0b02d0a6-b0d3-4011-bd95-183264a30217 [Accessed on 14.03.2021].
  • [8] P.M.Wensing, A.Wang, S. Seok, D. Otten, J. Lang, and S. Kim, “Proprioceptive actuator design in the MIT Cheetah: Impact mitigation and high-bandwidth physical interaction for dynamic legged robots,” IEEE Trans. Robotics, vol. 33, no. 3, pp. 509–522, 2017, doi: 10.1109/TRO.2016.2640183.
  • [9] M. Hutter, C. Gehring, D. Jud, A. Lauber, C.D. Bellicoso, V. Tsounis, J. Hwangbo et al., “ANYmal – a highly mobile and dynamic quadrupedal robot,” International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea (South), 2016, pp. 38–44, doi: 10.1109/IROS.2016.7758092.
  • [10] Unitree, “A1 actuator”. [Online]. Available: https://www.unitree.com/components/a1_motor. [Accessed on 14.03.2021].
  • [11] B.G. Katz, “A low cost modular actuator for dynamic robots,” M.A. thesis, Massachusetts Institute of Technology, June 2018.
  • [12] S. Seok, A. Wang, D. Otten, and S. Kim, “Actuator design for high force proprioceptive control in fast legged locomotion,” International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 2012, pp. 1970–1975, doi: 10.1109/IROS.2012.6386252.
  • [13] F. Grimminger et al., “An open torque-controlled modular robot architecture for legged locomotion research,” IEEE Rob. Autom. Lett., vol. 5, no. 2, pp. 3650–3657, 2020, doi: 10.1109/LRA.2020.2976639.
  • [14] P. Wasilewski and J. Tołstoj-Sienkiewicz, “Modeling and simulation of a parallel quadruped robot,” 20th International Carpathian Control Conference (ICCC), Poland, 2019, pp. 1–5, doi: 10.1109/CarpathianCC.2019.8765958.
  • [15] P.Wasilewski,M. Klimowicz, and R. Gra˛dzki, “Design and analysis of state vector modulation based brushless motor driver,” AIP Conference Proceedings, vol. 2029, p. 020078, 2018.
  • [16] D. Kim, S.J. Jorgensen, J. Lee, J. Ahn, J. Luo, and L. Sentis, “Dynamic locomotion for passive-ankle biped robots and humanoids using whole-body locomotion control,” Int. J. Rob. Res., vol. 39, no. 8, pp. 936–956, 2020, doi: 10.1177/0278364920918014.
  • [17] J.R. Mevey, “Sensorless field oriented control of brushless permanent magnet synchronous motors” M.A. thesis, Kansas State University, 2009.
  • [18] Himodels company, “Sunnysky 4108 product page.” [Online]. Available: http://www.himodel.com/m/electric/SUNNYSKY_X4108S_380KV_Outrunner_Brushless_Motor_for_Multi-rotor_Aircraft.html. [Accessed 08.11.2021].
  • [19] Gearbest, “QM5006 product page.” [Online]. Available: https://www.gearbest.com/motor/pp_09620387106.html [Accessed 08.11.2021].
  • [20] Hobbyking company. “Turnigy 4822 product page”. [Online]. Available: https://hobbyking.com/en_us/turnigy-multistar-4822- 690kv-22pole-multi-rotor-outrunner.html?_store=en_us. [Accessed 08.11.2021).
  • [21] M.D. Waugh, “Design solutions for dc bias in multilayer ceramic capacitors.” [Onlione]. Available: http://www.compel.ru/wordpress/wp-content/uploads/2014/01/Mark-D.-Waugh.pdf [Accessed: 08.11.2021].
  • [22] T. Liu, Y. Tan, G. Wu and S. Wang, “Simulation of PMSM vector control system based on Matlab/Simulink,” International Conference on Measuring Technology and Mechatronics Automation, Zhangjiajie, China, 2009, doi: 10.1109/ICMTMA.2009.117.
  • [23] M. Marufuzzaman, M.B.I. Reaz, M.S. Rahman, and A.M. Ali, “Hardware prototyping of an intelligent current DQ PI controller for FOC PMSM drive,” International Conference on Electrical & Computer Engineering (ICECE 2010), Dhaka, Bangladesh, 2010, pp. 86–88, doi: 10.1109/ICELCE.2010.5700559.
  • [24] A. Zentai and T. Daboczi, “Improving motor current control using decoupling technique,” EUROCON 2005 – The International Conference on “Computer as a Tool”, Serbia, 2005, pp. 354–357, doi: 10.1109/EURCON.2005.1629934.
  • [25] M.N. Gujjar and P. Kumar, “Comparative analysis of field oriented control of BLDC motor using SPWM and SVPWM techniques,” 2nd IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), India, 2017, pp. 924–929, doi: 10.1109/RTEICT.2017.8256733.
  • [26] A. Musing and J.W. Kolar, “Successful online education – GeckoCIRCUITS as open-source simulation platform,” 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 – ECCE ASIA), Japan, 2014, pp. 821–828, doi: 10.1109/IPEC.2014.6869683.
  • [27] V. Bobek, “PMSM electrical parameters measurement”. Freescale Semiconductor Aplication Note, Physics Forums, no. AN4680, 2013.
  • [28] D.Y. Ohm, Dynamic model of pm synchronous motors, Drivetech, Inc., Blacksburg, Virginia, 2000.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2c5d7dc-db26-4809-b762-d2c58703145b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.