PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Crystallization, habit modification and control of nucleation of glycine polymorphs from aqueous solutions doped with magnesium sulfate impurity

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The influence of magnesium sulfate as an additive in the nucleation of α and γ-polymorphs of glycine crystallized from aqueous solutions has been explored for the first time. Based on crystallization experiments, it was concluded that lower concentration of magnesium sulfate, say less than 2 g/mL, favors α-nucleation sites, whereas the optimized concentration of magnesium sulfate impurity to yield γ-nucleation sites is 2 g/mL and above. The nucleation time span (in days), solubility and pH were measured for α- and γ-nucleation sites in the aqueous solutions doped with magnesium sulfate. The glycine polymorphs α- and γ-single crystals were grown by slow solvent evaporation technique at ambient temperature. Crystal habit of glycine polymorphs was investigated and analyzed using goniometry. The unit cell dimensions and space group of the as-grown crystal were identified by single crystal XRD analysis. Both α- and γ-polymorphs of glycine were characterized structurally by powder XRD studies. The percentage of magnesium present in the grown glycine crystals was estimated by inductively coupled plasma optical emission spectrometry elemental analysis (ICP-OES). The nonlinear optical properties of the γ-glycine crystals were examined by Q-switched high energy Nd:YAG laser. The second harmonic generation output efficiency of the as-grown gamma glycine single crystals was computed to be 1.31 times superior than that of the reference material potassium dihydrogen phosphate (KDP).
Wydawca
Rocznik
Strony
483--493
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Department of Physics, Government College of Technology, Coimbatore-641013, India
  • Department of Physics, Government College of Technology, Coimbatore-641013, India
autor
  • Department of Physics, Nehru Institute of Technology, Coimbatore-641105, India
Bibliografia
  • [1] POORNACHARY S.K., CHOW P.S., TAN R.B., Cryst. Growth Des., 8 (2008), 179.
  • [2] POORNACHARY S.K., CHOW P.S., TAN R.B., J. Cryst. Growth, 310 (2008), 3034.
  • [3] LITAKA Y., Acta Crystallogr., 14 (1961), 1.
  • [4] LITAKA Y., Proc. Japan Acad., 30 (1954), 109.
  • [5] LITAKA Y., Acta Crystallogr., 11 (1958), 225.
  • [6] LITAKA Y., Acta Crystallogr., 13 (1960), 35.
  • [7] DAWSON A., ALLAN D.R., BELMONTE S.A., CLARK S.J., DAVID W.I.F., MC GREGOR P.A., PARSONS S., PULHAM C.R., SAWYER L., Cryst. Growth Des., 5 (2005), 1415.
  • [8] BOLDYREVA E.V., Cryst. Eng., 6 (2003), 235.
  • [9] MARSH R.E., Acta Crystallogr., 11 (1958), 654.
  • [10] DILLIP G.R., RAGHAVAIAH P., MALLIKARJUNA K., MADHUKAR REDDY C., BHAGAVANNARAYANA G., RAMESH KUMAR V., DEVA PRASAD RAJU B., Spectrochim. Acta Part A, 79 (2011), 1123.
  • [11] DILLIP G.R., BHAGAVANNARAYANA G., RAGHAVAIAH P., DEVA PRASAD RAJU B., Mater. Chem. Phys., 134 (2012), 371.
  • [12] NARAYANBHAT M., DHARMAPRAKASH S.M., J. Cryst. Growth, 242 (2002), 245.
  • [13] NARAYANA MOOLYA B., JAYARAMA A., SURESH KUMAR M.R., DHARMAPRAKASH S.M., J. Cryst. Growth, 280 (2005), 581.
  • [14] ZULIFIQAR ALI AHAMED S.D., DILLIP G.R., RAGHAVAIAH P., MALLIKARJUNA K., DEVA PRASAD RAJU B., Arab. J. Chem., 6 (2013), 429.
  • [15] PARIMALADEVI R., SEKAR C., Spectrochim. Acta Part A, 76 (2010), 490.
  • [16] ANBUCHUDAR AZHAGAN S., GANESAN S., Optik, 11 (2012), 993.
  • [17] ANBUCHUDAR AZHAGAN S., GANESAN S., Optik, 6 (2013), 526.
  • [18] ANBUCHUDAR AZHAGAN S., GANESAN S., Optik, 15 (2013), 2251.
  • [19] ANBU CHUDAR AZHAGAN S., GANESAN S., Optik, 20 (2013), 4452.
  • [20] ANBU CHUDAR AZHAGAN S., GANESAN S., Optik, 23 (2013), 6456.
  • [21] ANBUCHUDAR AZHAGAN S., GANESAN S., IJPS, 8 (2013), 6.
  • [22] SRINIVASAN K., RENUGA DEVI K., ANBUCHUDAR AZHAGAN S., Cryst. Res. Technol., 46 (2011), 159.
  • [23] SRINIVASAN K., J. Cryst. Growth, 311 (2008), 156.
  • [24] SRINIVASAN K., ARUMUGAM J., Opt. Mater., 30 (2007), 40.
  • [25] RENUGA DEVI K., SRINIVASAN K., Cryst. Res. Technol., 50 (2015), 389.
  • [26] BALAKRISHNAN T., RAMESH BABU R., RAMAMURTHI K., Spectrochim. Acta Part A, 69 (2008), 1114.
  • [27] ANBUCHEZHIYAN M., PONNUSAMY S., SINGH S. P., PAL P.K., DATTA P.K., MUTHAMIZHCHELVAN C., Cryst. Res. Technol., 45 (2010), 497.
  • [28] YOGAMBAL C., EZHIL VIZHI R., RAJAN BABU D., Cryst. Res. Technol., 50 (2015), 22.
  • [29] SEKAR C., PARIMALADEVI R., Spectrochim. Acta Part A, 74 (2009), 1160.
  • [30] Organic Index to the Powder Diffraction File, Joint committee of Powder Diffraction standards, 2002.
  • [31] KURTZ S.K., PERRY T.T., J. Appl. Phys., 39 (1968), 3798.
  • [32] HE G., BHAMIDI V., WILSON S.R., TAN R.B.H., KENIS P.J.A., ZUKOSKI C.F., Cryst. Growth Des., 6 (2006), 1746.
  • [33] TOWLER C.S., DAVEY R.J., LANCASTER R.W., PRICE C.J., J. Am. Chem. Soc., 126 (2004), 13347.
  • [34] LI L., LECHUGA-BALLESTEROS D., SZKUDLAREK B.A., NAIR RODRIGUEZ-HORNEDO N., J. Colloid. Interf. Sci., 168 (1994), 8.
  • [35] BISKER-LEIB V., DOHERTY M.F., Cryst. Growth Des., 3 (2002), 221.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2c3f4ed-5133-45b6-bc6a-7e2931b6d8bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.