Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This manuscript introduces a novel wideband metamaterial absorber targeting the 2 GHz to 20 GHz range. The design employs a chaos theory, specifically the Chen attractor system, to generate fractal-structured patterns that enhance electromagnetic absorption. These patterns exhibit multi-resonant behaviour, providing superior efficiency compared to conventional periodic designs. The absorber is further optimized with a Magtrex 555 substrate (0.51 mm thick), known for its frequency-dependent permittivity and permeability, which amplifies performance. This combination of chaotic structures and optimized substrate achieves over 90% absorption efficiency across a broad frequency range. Comprehensive simulations and parametric studies validate the absorber effectiveness, significantly improving bandwidth and absorption capacity. The design is well-suited for electromagnetic shielding, energy harvesting, and stealth technology applications. Future works will emphasize real-world performance testing to validate practical applications in wireless communication, sensing technologies, and defence. By combining chaotic dynamics with substrate optimization, this work contributes significantly to next-generation electromagnetic absorbers, offering enhanced broadband absorption for various applications.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
art. no. e154199
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- Department of Computer Engineering, Bozok University, Yozgat, Turkey
autor
- Department of Computer Engineering, Bozok University, Yozgat, Turkey
autor
- Department of Computer Engineering, Bozok University, Yozgat, Turkey
autor
- Department of Electrical and Electronics Engineering, Iskenderun Technical University, Iskenderun, Hatay, Turkey
- ISTE Center for Science and Technology Studies and Research (ISTE-CSTSR), Iskenderun, Hatay, Turkey
autor
- Department of Electrical and Electronics Engineering, Iskenderun Technical University, Iskenderun, Hatay, Turkey
autor
- Department of Electrical and Electronics Engineering, Gaziantep University, Gaziantep, Turkey
autor
- Grupo de Investigación Ingeniar, Facultad de Ciencias Básicas e Ingenierías, Corporación Universitaria Remington, Calle 51 #51-27, Medellín, Colombia
autor
- Department of Electrical and Electronics Engineering, Iskenderun Technical University, Iskenderun, Hatay, Turkey
Bibliografia
- [1] Abdulkarim, Y. I., Deng, L., Altıntaş, O., Ünal, E. & Karaaslan, M. Metamaterial absorber sensor design by incorporating swastika shaped resonator to determination of the liquid chemicals depending on electrical characteristics. Phys. E Low Dimens. Syst. Nanostruct. 114, 113593 (2019). https://doi.org/10.1016/j.physe.2019.113593.
- [2] Almutairi, A. F. et al. A complementary split ring resonator based metamaterial with effective medium ratio for C-band microwave applications. Results Phys. 15, 102675 (2019). https://doi.org/10.1016/j.rinp.2019.102675.
- [3] Prakash, D. & Gupta, N. Applications of metamaterial sensors: A review. Int. J. Microw. Wirel. Technol. 14, 19-33 (2022). https://doi.org/10.1017/S1759078721000039.
- [4] Abdulsattar, R. K., Elwi, T. A. & Abdul Hassain, Z. A. A new microwave sensor based on the moore fractal structure to detect water content in crude oil. Sensors 21, 7143 (2021). https://doi.org/10.3390/s21217143.
- [5] Abdulkarim, Y. I. et al. The detection of chemical materials with a metamaterial-based sensor incorporating oval wing resonators. Electronics 9, 825 (2020). https://doi.org/10.3390/electronics9050825.
- [6] Njogu, P. M., Sanz-Izquierdo, B. & Parker, E. A. A liquid sensor based on frequency selective surfaces. IEEE Trans. Antennas Propag. 71, 631-638 (2022). https://doi.org/10.1109/TAP.2022.3219540.
- [7] Abdulkarim, Y. I. et al. A review on metamaterial absorbers: Microwave to optical. Front. Phys. 10, 893791 (2022). https://doi.org/10.3389/fphy.2022.893791.
- [8] Meenakshi, Saurav, P. & Kishor, K. Design and simulation of metamaterial under the THz frequency for short-range wireless communication and military purposes. Mater. Today: Proc. 62, 3729-3733 (2022). https://doi.org/10.1016/j.matpr.2022.04.437.
- [9] Qiu, Y., Zhang, P., Li, Q., Zhang, Y. & Li, W. A perfect selective metamaterial absorber for high-temperature solar energy harvesting. Sol. Energy 230, 1165-1174 (2021). https://doi.org/10.1016/j.solener.2021.11.034.
- [10] Bakır, M., Karaaslan, M., Unal, E., Akgol, O. & Sabah, C. Microwave metamaterial absorber for sensing applications. Opto-Electron. Rev. 25, 318-325 (2017). https://doi.org/10.1016/j.opelre.2017.10.002.
- [11] Ramya, S. & Srinivasa Rao, I. An ultra-thin compact wideband metamaterial absorber. Radioengineering 27, 364-372 (2018). https://doi.org/10.13164/re.2018.0364.
- [12] Meng, Q., Zheng, L., Chen, F., Zhang, H. & Yang, W. High-efficiency broadband perfect absorber based on a multilayered pyramid structure. Phys. Scr. 98, 015811 (2022). https://doi.org/10.1088/1402-4896/aca72a.
- [13] Chikhi, N., Passarelli, A., Andreone, A. & Masullo, M. R. Pyramidal metamaterial absorber for mode damping in microwave resonant structures. Sci. Rep. 10, 19352 (2020). https://doi.org/10.1038/s41598-020-76433-3.
- [14] Yu, P. et al. Broadband metamaterial absorbers. Adv. Opt. Mater. 7, 1800995 (2019). https://doi.org/10.1002/adom.201800995.
- [15] Chen, W., Chen, R., Zhou, Y. & Ma, Y. Broadband metamaterial absorber with an in-band metasurface function. Opt. Lett. 44, 1076-1079 (2019). https://doi.org/10.1364/OL.44.001076.
- [16] Yao, X. et al. Design of an ultra‐broadband microwave metamaterial absorber based on multilayer structures. Int. J. RF Microw. Comput.‐Aided Eng. 32, e23222 (2022). https://doi.org/10.1002/mmce.23222.
- [17] Wang, B.-X., Xu, C., Duan, G., Xu, W. & Pi, F. Review of broadband metamaterial absorbers: from principles, design strategies, and tunable properties to functional applications. Adv. Funct. Mater. 33, 2213818 (2023). https://doi.org/10.1002/adfm.202213818.
- [18] Shen, Y. et al. Transparent broadband metamaterial absorber enhanced by water-substrate incorporation. Opt. Express 26, 15665-15674 (2018). https://doi.org/10.1364/OE.26.015665.
- [19] Nguyen, T. T. & Lim, S. Angle-and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators. Appl. Phys. Lett. 112, 021605 (2018). https://doi.org/10.1063/1.5004211.
- [20] Zhang, Z. et al. Broadband metamaterial absorber for low-frequency microwave absorption in the S-band and C-band. J. Magn. Magn. Mater. 497, 166075 (2020). https://doi.org/10.1016/j.jmmm.2019.166075.
- [21] Zhang, C. et al. Hybrid metamaterial absorber for ultra-low and dual-broadband absorption. Opt. Express 29, 14078-14086 (2021). https://doi.org/10.1364/OE.423245.
- [22] Sayed, S. I., Mahmoud, K. R. & Mubarak, R. I. Design and optimization of broadband metamaterial absorber based on manganese for visible applications. Sci. Rep. 13, 11937 (2023). https://doi.org/10.1038/s41598-023-38263-x.
- [23] Alavikia, B., Almoneef, T. S. & Ramahi, O. M. Wideband resonator arrays for electromagnetic energy harvesting and wireless power transfer. Appl. Phys. Lett. 107, 243902 (2015). https://doi.org/10.1063/1.4937591.
- [24] Tu, J. The Design of Conformal and Chaotic Electromagnetic Stealth Metasurface for Arbitrary NURBS Curved Surfaces. in 2021 Global Symposium on Millimeter-Waves & Terahertz (GSMM) 1-6 (IEEE, 2021). https://doi.org/10.1109/GSMM53250.2021.9511899.
- [25] Gros, J. B., del Hougne, P. & Lerosey, G. Tuning a regular cavity to wave chaos with metasurface-reconfigurable walls. Phys. Rev. A 101, 061801 (2020). https://doi.org/10.1103/PhysRevA.101.061801.
- [26] Yuan, X. et al. Wideband high-absorption electromagnetic absorber with chaos patterned surface. IEEE Antennas Wirel. Propag. Lett. 18, 197-201 (2018). https://doi.org/10.1109/LAWP.2018.2886049.
- [27] Chen, G. & Ueta, T. Yet another chaotic attractor. Int. J. Bifurc. Chaos 9, 1465-1466 (1999). https://doi.org/10.1142/S0218127499001024.
- [28] Ramakrishna, S. A. Physics of negative refractive index materials. Rep. Prog. Phys. 68, 449 (2005). https://doi.org/10.1088/0034-4885/68/2/R06.
- [29] Jiao, P., Mueller, J., Raney, J. R., Zheng, X. & Alavi, A. H. Mechanical metamaterials and beyond. Nat. Commun. 14, 6004 (2023). https://doi.org/10.1038/s41467-023-41679-8.
- [30] Ong, K.-K., Shiah, A. & Musielak, Z. E. Fractal images of generalized Julia sets. Fractals 4, 533-541 (1996). https://doi.org/10.1142/S0218348X96000649.
- [31] Alpigini, J. J. The evaluation and visualization of system performance in chaotic dynamical systems. Inf. Sci. 127, 173-192 (2000). https://doi.org/10.1016/S0020-0255(00)00038-4.
- [32] Lee, J.-S. Digital image smoothing and the sigma filter. CVGIP 24, 255-269 (1983). https://doi.org/10.1016/0734-189X(83)90047-6.
- [33] Nuñez-Perez, J. C., Adeyemi, V. A., Sandoval-Ibarra, Y., Perez-Pinal, F. J. & Tlelo-Cuautle, E. Maximizing the chaotic behavior of fractional order Chen system by evolutionary algorithms. Mathematics 9, 1194 (2021). https://doi.org/10.3390/math9111194.
- [34] Su, J. et al. Ultrawideband radar cross-section reduction by a metasurface based on defect lattices and multiwave destructive interference. Phys. Rev. Appl. 11, 044088 (2019). https://doi.org/10.1103/PhysRevApplied.11.044088.
- [35] Xing, B.-B., Liu, Z.-G., Lu, W.-B., Chen, H. & Zhang, Q.-D. Wideband microwave absorber with dynamically tunable absorption based on graphene and random metasurface. IEEE Antennas Wirel. Propag. Lett. 18, 2602-2606 (2019). https://doi.org/10.1109/LAWP.2019.2944966.
- [36] Wang, H. et al. Chaos-based coding metasurface for radar cross-section reduction. J. Phys. D: Appl. Phys. 52, 405304 (2019). https://doi.org/10.1088/1361-6463/ab2dc6.
- [37] Ma, X., Tian, F., Li, X., Guo, L. & Huang, X. Broadband with enhanced oblique incidence metamaterial absorber. Mater. Res. Express 7, 095803 (2020). https://doi.org/10.1088/2053-1591/abba9e.
- [38] Yuan, X. et al. Wideband high-absorption electromagnetic absorber with chaos patterned surface. IEEE Antennas Wirel. Propag. Lett. 18, 197-201 (2018). https://doi.org/10.1109/LAWP.2018.2886049.
- [39] Zhang, R., Ding, F., Yuan, X. & Chen, M. Influence of spatial correlation function on characteristics of wideband electromagnetic wave absorbers with chaotic surface. Chin. Phys. Lett. 39, 094101 (2022). https://doi.org/10.1088/0256-307X/39/9/094101.
- [40] Köksal, A. S. & Ünal, S. Multiband absorber design and optimization with Lorenz chaotic attractor. Phys. Scr. 98, 115522 (2023). https://doi.org/10.1088/1402-4896/ad008e.
- [41] Bhattacharyya, S., Ghosh, S., Chaurasiya, D. & Srivastava, K. V. A Broadband Wide Angle Metamaterial Absorber for Defense Applications. in 2014 IEEE International Microwave and RF Conference (IMaRC) 33-36 (IEEE, 2014). https://doi.org/10.1109/IMaRC.2014.7038964.
- [42] Tuan, T. S., Lam, V. D. & Hoa, N. T. Q. Simple design of a copolarization wideband metamaterial absorber for C-band applications. J. Electron. Mater. 48, 5018-5027 (2019). https://doi.org/10.1007/s11664-019-07301-8.
- [43] Sood, D. & Tripathi, C. C. Broadband ultrathin low-profile metamaterial microwave absorber. Appl. Phys. A 122, 332 (2016). https://doi.org/10.1007/s00339-016-9884-2.
- [44] Xu, Y., Zhang, B., Duan, J. & Tian, Y. Design of Broadband Metamaterial Absorber for C Band and X Band. in 2018 IEEE International Conference on Computer and Communication Engineering Technology (CCET) 159-163 (2018).
Uwagi
1. This work was supported by “The Scientific and Techno-logical Research Council of Turkey (TUBITAK)” with project no. 123F245.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2beec10-cc82-4e61-8eae-dc7e974ddafd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.