PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Removal of copper from copper-contaminated river water and aqueous solutions using Methylobacterium extorquens modified Erzurum clayey soil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of this study was to investigate the possibility of using natural and bacteria-modified Erzurum clayey soil with Methylobacterium extorquens as an alternative to high cost commercial adsorbent materials for the removal of copper from aqueous solution. The copper concentrations in the samples of the polluted river water and CuCl2 solutions treated by the natural and bacteria-modified Erzurum clayey soil (ECS) have been determined by spectrophotometric method. Firstly, the surface of ECS was modified with M. extorquens and surface functionality was increased. Then, the adsorption of Cu (II) from solution phases was studied with respect to varying metal concentration, pH, and temperature and agitation time. The maximum adsorption of Cu (II) for natural and bacteria-modified Erzurum clayey soil was observed at pH: 5.0. At different copper concentrations, copper adsorption analysis was performed on 1 g using clay soil or modified clay soil. Maximum adsorption of Cu (II) was obtained as 45.7 and 48.1 mg g-1 at initial concentration (50 mg/50 mL) and optimal conditions by natural and bacteria-modified clay soil, respectively. The copper concentration was decreased in the substantial amount of the leachates solutions of natural and bacteria-modified clay soil. Langmuir and Freundlich isotherms were used to describe the adsorption behavior of Cu (II) ions. The results showed that modified clay soil had a high level of adsorption capacity for copper ion. The various thermodynamic parameters such as ΔG°, ΔH° and ΔS° were analyzed to observe the nature of adsorption. The structural properties of the natural and bacteria-modified-ECS have been characterized by SEM, FTIR and XRD techniques. Consequently, it was concluded that the bacteria-modified clay soil could be successfully used for the removal of the copper ions from the aqueous solutions.
Rocznik
Strony
58--69
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
autor
  • Ataturk University, Erzurum, Turkey, Erzurum Vocational Training School, Department of Chemical Technology
autor
  • Ataturk University, Erzurum, Turkey, Erzurum Vocational Training School, Department of Food Technology
autor
  • Ataturk University, Erzurum, Turkey, Oltu Earth Sciences Faculty, Geological Engineering Department
autor
  • Ataturk University, Erzurum, Turkey, Agriculture Faculty, Department of Plant Protection
Bibliografia
  • [1]. Ahmad, A., Rafatullah, M., Sulaiman, O., Ibrahim, M.H., Chii, Y.Y. & Siddique, B.M. (2009). Removal of Cu (II) and Pb (II) ions from aqueous solutions by adsorption on sawdust of Meranti wood, Desalination, 247, pp. 636-646.
  • [2]. Aksu, Z. (2001). Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature, Separation and Purification Technology, 21, pp. 285-294.
  • [3]. Aksu, Z. & Isoglu, I.A. (2005). Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature, Process Biochemistry, 40, pp. 3031-3044.
  • [4]. Al-Asheh, S. & Banat, F. (2001). Adsorption of Zn (II) and Cu (II) ions by the solid waste of the olive oil industry, Adsorption Science and Technology, 19, pp. 117-129.
  • [5]. Amuda, O.S., Giwa, A.A. & Bello, I.A. (2007). Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon, Biochemical Engineering Journal, 36, pp. 174-181.
  • [6]. Bansal, M., Singh, D., Garg, V.K. & Rose, P. (2009). Use of agricultural waste for the removal of nickel ions from aqueous solutions: equilibrium and kinetics studies, World Academy of Science Engineering and Technology, 51, pp. 431-437.
  • [7]. Bansal, R.C. & Goyal, M. (2005). Activated carbon adsorption, CRC Press Taylor & Francis Group LCC, ISBN 0-8247-5344-5, Boca Raton, Florida, USA 2005.
  • [8]. Baraka, A., Hall, P.J. & Heslop, M.J.(2007). Preparation and characterization of amine-formaldehyde-DTPA chelating resin and its use as an adsorbent for heavy metals removal from wastewater, Reactive and Functional Polymers, 67, pp. 585-600.
  • [9]. Benaissa, H. & Elouchdi, M.A. (2007). Removal of copper ions from aqueous solutions by dried sunflower leaves, Chemical Engineering and Processing, 46, pp. 614-622.
  • [10]. Bhatnagara, A., Minocha, A.K. & Sillanpaa, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent, Biochemical Engineering Journal, 48, pp. 181-186.
  • [11]. Bhattacharyya, K.G. & Gupta, S.S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review, Advances in Colloid and Interface Science, 140, pp. 114-131.
  • [12]. Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M.B. & Hay, A.G. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution, Bioresource Technology, 102, pp. 8877-8884.
  • [13]. Demirbas, D., Karadag, A., Aklan, M. & Dogan, M. (2008). Removal of copper ions from aqueous solutions by hazelnut shell, Journal of Hazardous Materials, 153, pp. 677-684.
  • [14]. Dhabab, J.M. (2011). Removal of some heavy metal ions from their aqueous solutions by duckweed, Journal of Toxicology and Environmental Health Sciences, 3, 6, pp. 164-170.
  • [15]. Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J. & Sanchez-Polo, M. (2007). Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review, Journal of Environmental Management, 85, pp. 833-846.
  • [16]. Elouear, Z., Bouzid, J., Boujelben, N., Feki, M., Jamoussi, F. & Montiel, A. (2008). Heavy metal removal from aqueous solutions by activated phosphate rock, Journal of Hazardous Materials, 156, pp. 412-420.
  • [17]. Freundlich, H. & Hatfield, H. (1926). Colloid and Capillary Chemistry, Methuen and Co Ltd, London 1926.
  • [18]. Gangoli, N., Markey, D.C. & Thodos, G. (1975). In Proceedings of the Second National Conference on Complete Water Reuse: Water’s Interface with Energy Air and Solids, Chicago, IL, AIChE. 3, pp. 270-275.
  • [19]. Ghazy, S.E. & Ragab, A.H. (2007). Removal of copper from water samples by sorption onto powdered limestone, Indian Journal of Chemical Technology, 14, pp. 507-514.
  • [20]. Gupta, V.K., Jain, C.K., Ali, I., Sharma, M. & Saini, V.K. (2003). Removal of cadmium and nickel from wastewater using bagasse fly ash - a sugar industry waste, Water Research, 37, pp. 4038-4044.
  • [21]. Ibrahim, M.N.M., Ngah, W.S.W., Norliyana, M.S. & Daud, W.R.W. (2009). Copper (II) biosorption on soda lignin from oil palm empty fruit bunches (EFB), Clean - Soil, Air, Water, 37, pp. 80-85.
  • [22]. Jaman, H., Chakraborty, D. & Saha, P. (2009). A study of the thermodynamics and kinetics of copper adsorption using chemically modified rice husk, Clean - Soil, Air, Water, 37, pp. 704-711.
  • [23]. Jan, S., Roblot, C., Courtois, J., Courtois, B., Barbotin, J.N. & Seguin, J.P. (1996). H-NMR spectroscopic determinatin of poly 3-hydroxybutyrate extracted from microbial biomass, Enzyme and Microbial Technology, 18, pp. 195-201.
  • [24]. Kakitani, T., Hata, T., Kajimoto, T., Koyanaka, H. & Imamura, Y. (2009). Characteristics of a bioxalate chelating extraction process for removal of chromium, copper and arsenic from treated wood, Journal of Environmental Management, 90, pp. 1918-1923.
  • [25]. Kalkan, E. & Bayraktutan, M.S. (2008). Geotechnical evaluation of Turkish clay deposits: a case study in Northern Turkey, Environmental Geology, 55, pp. 937-950.
  • [26]. Kalkan, E., Nadaroglu, H. & Demir, N. (2012). Experimental study on the nickel (II) removal from aqueous solutions using silica fume with/without apocarbonic anhydrase, Desalination and Water Treatment, 44, pp. 180-189.
  • [27]. Kalkan, E. & Yarbaşı, N. (2013). Use of marble dust waste material for stabilization of compacted clayey soils, Jokull Journal, 63, 5, pp. 322-344.
  • [28]. Kumar, P.S., Ramalingam, S., Sathyaselvabala, V., Kirupha, S.D. & Sivanesan, S. (2011). Removal of copper (II) ions from aqueous solution by adsorption using cashew nut shell, Desalination, 266, pp. 63-71.
  • [29]. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, Journal of the American Chemical Society, 40, 8, pp. 1361-1403.
  • [30]. Laraous, S., Meniai, A.H. & Bencheikh Lehocine, M. (2005). Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust, Desalination, 185, pp. 483-490.
  • [31]. Li, X., Yanfeng Li, Y. & Ye, Z. (2011). Preparation of macroporous bead adsorbents based on poly(vinyl alcohol)/chitosan and their adsorption properties for heavy metals from aqueous solution, Chemical Engineering Journal, 178, pp. 60-68.
  • [32]. Nadaroglu, H. & Kalkan, E. (2014). Removal of copper from aqueous solution using silica fume with/without apocarbonic anhydrase, Indian Journal of Chemical Technology, 21, pp. 249-256.
  • [33]. Nadaroglu, H. & Kalkan, E. (2012). Alternative absorbent industrial red mud waste material for cobalt removal from aqueous solution, International Journal of Physical Sciences, 7, 9, pp. 1386-1394.
  • [34]. Nadaroglu, H., Kalkan, E. & Celebi, N. (2014). Removal of copper from aqueous solutions by using Berriasiyen-Aptian aged micritic limestone, Carpathian Journal of Earth And Environmental Sciences, 9, 1, pp. 69-80.
  • [35]. Nadaroglu, H., Kalkan, E. & Celik, H. (2015). Equilibrium studies of copper ion adsorption onto modified and powdered kernel of date (Fructus dactylus), International Journal of Environmental Science and Technology, 12, pp. 2079-2090.
  • [36]. Nadaroglu, H, Kalkan, E. & Demir, N. (2010). Removal of copper from aqueous solution using red mud, Desalination, 153, pp. 90-95.
  • [37]. Najua, D.T., Luqman, C.A., Zawani, Z. & Suraya, A.R. (2008). Adsorption of copper from aqueous solution by Elais Guineensis kernel activated carbon, Journal of Engineering Science and Technology, 3, pp. 180-189.
  • [38]. Nohut, S., Karabocek, S., Guner, S. & Gok, Y. (1999). Extraction and spectrophotometric determination of copper (II) with S, S′-bis(2-aminophenyl)oxalate, Journal of Pharmaceutical and Biomedical Analysis, 20, pp. 309-314.
  • [39]. Onundi, Y.B., Mamun, A.A., Al Khatib, M.F. & Ahmed, Y.M. (2010). Adsorption of copper, nickel and lead ions from synthetic semiconductor industrial wastewater by palm shell activated carbon, International Journal of Science and Technology, 7, pp. 751-758.
  • [40]. Polowczyk, I., Bastrzyk, A., Kozlecki, T., Rudnicki, P., Sawinski, W. & Sadowski, Z. (2007). Application of fl y ash agglomerates in the sorption of arsenic, Polish Journal of Chemical Technology, 9, pp. 37-41.
  • [41]. Pons, M.P. & Fuste, C.M. (1993). Uranium uptake by immobilized cells of Pseudomonas strain EPS 5028, Applied Microbiology and Biotechnology, 39, pp. 661-665.
  • [42]. Qadeer, R. & Akhtar, S. (2005). Kinetics study of lead ion adsorption on active carbon, Turkish Journal of Chemistry, 29, pp. 95-99.
  • [43]. Quan, H., Bai, H., Han, Y., Kang, Y. & Sun, J. (2013). Removal of Cu(II) and Fe(III) from aqueous solutions by dead sulfate reducing bacteria, Frontiers of Chemical Science and Engineering, 7, 2, pp. 177-184.
  • [44]. Ramesh, A., Lee, D.J. & Wong, J.W.C. (2005). Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewater with low-cost adsorbents, Journal of Colloid and Interface Science, 291, pp. 588-592.
  • [45]. Rashad, M.M., Hessien, M.M., Abdel-Aal, E.A., El-Barawy, K. & Singh, R.K. (2011). Transformation of silica fume into chemical mechanical polishing (CMP) nano-slurries for advanced semiconductor manufacturing, Powder Technology, 205, pp. 149-154.
  • [46]. Sahan, T., Ceylan, H., Sahiner, N. & Aktas, N. (2010). Optimization of removal conditions of copper ions from aqueous solutions by Trametes versicolor, Bioresource Technology, 101, pp. 4520-4526.
  • [47]. Sarioglu, M., Guler, U.A. & Beyazit, N. (2009). Removal of copper from aqueous solutions by phosphate rock, Desalination, 239, pp. 167-174.
  • [48]. Sarioglu, M., May, O.A. & Cebeci, Y. (2005). Removal of copper from aqueous solutions by phosphate rock, Desalination, 181, pp. 303-311.
  • [49]. Seifullina, I.I. & Skorokhod, L.S. (1991). Spectrophotometric study of the reaction of copper (II), nickel (II), and cobalt (II) salts with 1-amino-2-hydroxy-4-naphthalenesulfonic acid, Zhurnal Obshchei Khimii Russia Journal of General Chemistry, 61, pp. 2005-2008.
  • [50]. Sekher, K.C., Subramanian, S., Modak, J.M. & Natarajan, K.A. (1998). Removal of metal ions using an industrial biomass with reference to environmental control, International Journal of Mineral Processing, 53, pp. 107-120.
  • [51]. Unlu, N. & Ersoz, M. (2007). Removal of heavy metal ions by using dithiocarbamatedsporopollenin, Separation and Purification Technology, 52, pp. 461-469.
  • [52]. Wang, R., Men, J. & Gao, B. (2012). The adsorption behavior of functional particles modified by polyvinylimidazole for Cu (II) ion, Clean - Soil, Air, Water, 40, pp. 278-284.
  • [53]. Wang, S., Boyjoo, Y., Choueib, A. & Zhu, Z.H. (2005). Removal of dyes from aqueous solutionusing fl y ash and red mud, Water Research, 39, pp. 129-138.
  • [54]. Yang, Z., Zhang, Z., Chai, L., Wang, Y., Liu, Y. & Xiao, R. (2016). Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90, Journal of Hazardous Materials, 301, pp. 145-152.
  • [55]. Zhu, C.S., Wang, L.P. & Chen, W.B. (2009). Removal of Cu (II) from aqueous solution by agricultural by-product: Peanut hull, Journal of Hazardous Materials, 168, pp. 739-746.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2bb4a18-a59e-4dd6-a8fc-ef2899764130
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.