Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We present spectral and imaging LOFAR (LOw-Frequency ARray) observations in the 20 - 40 MHz range of solar radio bursts fine structures, such as flag-like, sail-like, and dot-like that appeared on 8 April 2019. These structures were associated with type III solar radio bursts that occurred in the 40 - 80 MHz band. The mean duration and spectral widths of the fine structures range from 1.0 to 3.4 s and from 0.3 to 0.9 MHz, respectively. Additionally, we investigated the radio images of eight fine structures - two flags, two sails and four dots. This allowed us to determine their emission source sizes, which ranged from 240 to 392 arcmin2 , and their frequencies from 25.58 to 39.25 MHz as well as their location. They occurred on the east side of the Sun and were most likely associated with an emerging active region NOAA AR 12738, where a weak B1.7 flare was observed.
Wydawca
Czasopismo
Rocznik
Tom
Strony
987--993
Opis fizyczny
Bibliogr. 30 poz.
Twórcy
autor
- Space Radio-Diagnostics Research Centre, University of Warmia and Mazury, R. Prawochenskiego 9, 10-719 Olsztyn, Poland
autor
- Space Radio-Diagnostics Research Centre, University of Warmia and Mazury, R. Prawochenskiego 9, 10-719 Olsztyn, Poland
autor
- Leibniz-Institut fur Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
autor
- Center for mathematical Plasma Astrophysics, KU Leuven, 3001 Leuven, Belgium
- Royal Observatory of Belgium, 1180 Ukkel, Brussels, Belgium
autor
- Center for Solar-Terrestrial Research, New Jersey Institute of Technology, Newark, NJ, USA
- Cooperative Programs for the Advancement of Earth System Science, University Corporation for Atmospheric Research, Boulder, CO, USA
autor
- Space Radio-Diagnostics Research Centre, University of Warmia and Mazury, R. Prawochenskiego 9, 10-719 Olsztyn, Poland
autor
- Leibniz-Institut fur Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
- Zentrum fur Astronomie und Astrophysik, Technische Universitat Berlin, HardenbergstraBe 36, 10623 Berlin, Germany
autor
- Department of Physics and Astronomy, University of Turku, 20014 Turku, Finland
autor
- Space Radio-Diagnostics Research Centre, University of Warmia and Mazury, R. Prawochenskiego 9, 10-719 Olsztyn, Poland
autor
autor
- Leibniz-Institut fur Astrophysik Potsdam, An der Sternwarte 16, D-14482 Potsdam, Germany
autor
- ASTRON - The Netherlands Institute for Radio Astronomy, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo, The Netherlands
autor
autor
- RAL Space, United Kingdom Research and Innovation - Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Campus, Oxfordshire OX11 0QX, UK
autor
- School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 D02 PN40, Ireland
autor
- Royal Observatory of Belgium, 1180 Ukkel, Brussels, Belgium
autor
- Space Research Center of the Polish Academy of Sciences, Bartycka 18a, 00-716 Warsaw, Poland
autor
- Space Research Center of the Polish Academy of Sciences, Bartycka 18a, 00-716 Warsaw, Poland
Bibliografia
- 1. Abranin EP, Bazelian LL, Goncharov NI et al (1980) Positions of solar storm burst sources by observations with a heliograph based on the UTR-2 antenna at 25 MHz. Solar Phys 66(2):393-409. https://doi.org/10.1007/BF00150593
- 2. Benz A (2002) Plasma Astrophysics. Kinetic Processes in Solar and Stellar Coronae, second edition 279. https://doi.org/10.1007/0-306-47719-X
- 3. Bernold T (1980) A catalogue of fine structures in type IV solar radio bursts. Astron Astrophys Suppl Ser 42:43-58
- 4. Bhonsle RV, Sawant HS, Degaonkar SS (1979) Exploration of the solar corona by high resolution solar decametric observations. Space Sci Rev 24(3):259-346. https://doi.org/10.1007/BF00212422
- 5. Breitling F, Mann G, Vocks C et al (2015) The LOFAR solar imaging pipeline and the LOFAR solar data center. Astron Comput 13:99-107. https://doi.org/10.1016/j.ascom.2015.08.001
- 6. Chen L, Ma B, Wu D et al (2021) An interplanetary type IIIb radio burst observed by parker solar probe and its emission mechanism. Astrophys J Lett 915(1):L22. https://doi.org/10.3847/2041-8213/ac0b43
- 7. Chernov GP (2011) Fine Structure of Solar Radio Bursts, vol 375. https://doi.org/10.1007/978-3-642-20015-1
- 8. Chernov GP, Stanislavsky AA, Konovalenko AA et al (2007) Fine structure of decametric type II radio bursts. Astron Lett 33(3):192-202. https://doi.org/10.1134/S1063773707030061
- 9. Dabrowski B, Mikuła K, Flisek P et al (2023) Interferometric imaging of the type IIIb and U radio bursts observed with LOFAR on 22 August 2017. Astron Astrophys 669:A52. https://doi.org/10.1051/0004-6361/202142905
- 10. Jebaraj IC, Krasnoselskikh V, Pulupa M et al (2023) Fundamental- harmonic pairs of interplanetary Type III radio bursts. Astrophys J Lett 955(1):L20. https://doi.org/10.3847/2041-8213/acf857
- 11. Jebaraj IC, Magdalenic J, Krasnoselskikh V et al (2023) Structured type III radio bursts observed in interplanetary space. Astron Astrophys 670:A20. https://doi.org/10.1051/0004-6361/202243494
- 12. Magdalenić J, Vrsnak B, Zlobec P et al (2006) Classification and properties of supershort solar radio bursts. Astrophys J Lett 642(1):L77-L80. https://doi.org/10.1086/504521
- 13. Magdalenić J, Marque C, Fallows RA et al (2020) Fine structure of a solar type II radio burst observed by LOFAR. Astrophys J Lett 897(1):L15. https://doi.org/10.3847/2041-8213/ab9abc
- 14. Melnik VN, Rucker HO, Konovalenko AA et al (2008) Solar Type IV bursts at frequencies 10-30 MHz. Nova Science Publishers, New York, pp 287-325
- 15. Melnik VN, Konovalenko AA, Rucker HO et al (2011) Observations of Powerful Type III bursts in the frequency range 10-30 MHz. Sol Phys 269(2):335-350. https://doi.org/10.1007/s11207-010-9703-4
- 16. Melnik VN, Brazhenko AI, Frantsuzenko AV et al (2018) Properties of decameter IIIb-III pairs. Sol Phys 293(2):26. https://doi.org/10.1007/s11207-017-1234-9
- 17. Melnik VN, Konovalenko AA, Dorovskyy VV et al (2021) Exploration of the solar decameter radio emission with the UTR-2 radio telescope. Radio Phys Radio Astron 26(1):74-89. https://doi.org/10.15407/rpra26.01.074
- 18. Mercier C, Subramanian P, Chambe G et al (2015) The structure of solar radio noise storms. Astron Astrophys 576:A136. https://doi.org/10.1051/0004-6361/201321064
- 19. Newkirk G (1961) The solar corona in active regions and the thermal origin of the slowly varying component of solar radio radiation. Astrophys J 133:983. https://doi.org/10.1086/147104
- 20. Pulupa M, Bale SD, Badman ST et al (2020) Statistics and polarization of type III radio bursts observed in the inner heliosphere. Astrophys J Suppl Ser 246(2):49. https://doi.org/10.3847/1538-4365/ab5dc0
- 21. Reid HAS, Ratcliffe H (2014) A review of solar type III radio bursts. Res Astron Astrophys 14(7):773-804. https://doi.org/10.1088/1674-4527/14/7/003
- 22. Sishtla CP, Jebaraj IC, Pomoell J et al (2023) The effect of the parametric decay instability on the morphology of coronal type III radio bursts. Astrophys J Lett 959(2):L33. https://doi.org/10.3847/2041-8213/ad137e
- 23. van Haarlem MP, Wise MW, Gunst AW et al (2013) LOFAR: the LOw- frequency ARray. Astron Astrophys 556:A2. https://doi.org/10.1051/0004-6361/201220873
- 24. Voshchepynets A, Krasnoselskikh V, Artemyev A et al (2015) Probabilistic model of beam-plasma interaction in randomly inhomogeneous plasma. Astrophys J 807(1):38. https://doi.org/10.1088/0004-637X/807/1/38
- 25. Wild JP (1950) Observations of the spectrum of high-intensity solar radiation at metre wavelengths. II. outbursts. Aust J Sci Res A Phys Sci 3(3):399-408. https://doi.org/10.1071/CH9500399
- 26. Wild JP (1950) Observations of the spectrum of high-intensity solar radiation at metre wavelengths. III. isolated bursts. Aust J Sci Res A Phys Sci 3:541. https://doi.org/10.1071/CH9500541
- 27. Wild JP, McCready LL (1950) Observations of the spectrum of high- intensity solar radiation at metre wavelengths. I. the apparatus and spectral types of solar burst observed. Aust J Sci Res A Phys Sci 3:387. https://doi.org/10.1071/CH9500387
- 28. Wild JP, Murray JD, Rowe WC (1954) Harmonics in the spectra of solar radio disturbances. Aust J Phys 7:439. https://doi.org/10.1071/PH540439
- 29. Zhang P, Zucca P, Kozarev K et al (2022) Imaging of the quiet sun in the frequency range of 20-80 MHz. Astrophys J 932(1):17. https://doi.org/10.3847/1538-4357/ac6b37
- 30. Zhang P, Morosan D, Kumari A et al (2024) Spatially resolved radio signatures of electron beams in a coronal shock. Astron Astrophys 683:A123. https://doi.org/10.1051/0004-6361/202347799
Uwagi
Korekta artykułu w Acta Geophysica Vol. 73, no. 1/2025. Nr DOI korekty: 10.1007/s11600-024-01461-w
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2ba5cbe-5bd0-4fa4-ab34-0ba0f6f8704a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.