PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Synthesis and antifungal activity of new salicylic acid derivatives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A simple one-step procedure for synthesis of 1-methoxy-1-oxoalkan-2-yl salicylates and 1-methoxy-1-oxoalkan-2-yl 2-[(1-methoxy-1-oxoalkan-2-yl)oxy]benzoates by reaction of salicylic acid with several methyl 2-bromoalkanoates was developed. The reactions were carried out in N,N-dimethylformamide (DMF) in the presence of anhydrous potassium carbonate. Conditions for regioselective synthesis of target compounds were established. The developed procedure could be easily applied in the industrial production process. The new salicylic acid derivatives were obtained with satisfactory yields and were characterized by MS and 1H NMR spectra. The fungicidal activity of the prepared compounds was tested in vitro against seven species of plant pathogenic fungi. The best results were observed for 1-methoxy-1-oxoalkan-2-yl salicylates which showed moderate or good activity against Botrytis cinerea and Rhizoctonia solani.
Słowa kluczowe
Rocznik
Strony
143--148
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, al. Piastów 42, 71-065 Szczecin, Poland
autor
  • Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warszawa, Poland
autor
  • West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Institute of Organic Chemical Technology, al. Piastów 42, 71-065 Szczecin, Poland
Bibliografia
  • 1. Donmez, M.F., Esitken, A., Yildiz, H. & Ercisli, S. (2011). Biocontrol of Botrytis cinerea on strawberry fruit by plant growth promoting bacteria. J. Anim. Plant Sci. 21(4), 758-763.
  • 2. Barker, A.V. (2010). Science and technology of organic farming. Boca Raton, USA: CRC Press.
  • 3. Vilanova, L., Viñas, I., Torres, R., Usall, J., Buron-Moles, G. & Teixidó, N. (2014). Acidification of apple and orange hosts by Penicillium digitatum and Penicillium expansum. Int. J. Food Microbiol. 178, 39-49. DOI: 10.1016/j.ijfoodmicro.2014.02.022.
  • 4. da Rocha Neto, A.C., Luiz, C., Maraschin, M. & Di Piero, R.M. (2016). Efficacy of salicylic acid to reduce Penicillium expansum inoculum and preserve apple fruits. Int. J. Food Microbiol. 221, 54-60. DOI: 10.1016/j.ijfoodmicro.2016.01.007.
  • 5. da Rocha, M.E.B., Freire, F.C.O., Maia, F.E.F., Guedes, M.I.F. & Rondina, D. (2014). Mycotoxins and their effects on human and animal health. Food Control 36(1), 159-165. DOI: 10.1016/j.foodcont.2013.08.021.
  • 6. da Rocha Neto, A.C., Maraschin, M. & Di Piero, R.M. (2015). Antifungal activity of salicylic acid against Penicillium expansum and its possible mechanisms of action. Int. J. Food Microbiol. 215, 64-70. DOI: 10.1016/j.ijfoodmicro.2015.08.018.
  • 7. Feliziani, E. & Romanazzi, G. (2013, October). Preharvest application of synthetic fungicides and alternative treatments to control postharvest decay of fruit. Stewart Postharvest Rev. 9(3), 1-6. Retrieved July 12, 2016, from http://www.stewartpostharvest.com/articles.shtml.
  • 8. Bajwa, U. & Sandhu, K.S. (2014). Effect of handling and processing on pesticide residues in food - a review. J. Food Sci. Technol. 51(2), 201-220. DOI: 10.1007/s13197-011-0499-5.
  • 9. Grimalt, S. & Dehouck, P. (2016). Review of analytical methods for the determination of pesticide residues in grapes. J. Chromatogr. A 1433, 1-23. DOI: 10.1016/j.chroma.2015.12.076.
  • 10. Uclés, A., Valverde, G.A., García, M.D.G., del Real, A.M.A. & Fernández-Alba, A.R. (2015). Benzimidazole and imidazole fungicide analysis in grape and wine samples using a competitive enzyme-linked immunosorbent assay. Anal. Methods 7(21), 9158-9165. DOI: 10.1039/c5ay01048a.
  • 11. Wightwick, A., Walters, R., Allinson, G., Reichman, S. & Menzies, N. (2010). Environmental risks of fungicides used in horticultural production systems. In O. Carisse (Ed.), Fungicides (pp. 273-304). InTech. Retrieved July 12, 2016, from http://www.intechopen.com/books/fungicides. DOI: 10.5772/13032.
  • 12. van den Bosch, F., Paveley, N., Shaw, M., Hobbelen, P. & Oliver, R. (2011). The dose rate debate: does the risk of fungicide resistance increase or decrease with dose? Plant Pathol. 60(4), 597-606. DOI: 10.1111/j.1365-3059.2011.02439.x.
  • 13. Rainsford, K.D. (Ed.) (2004). Aspirine and related drugs. London, UK: CRC Press.
  • 14. Sahoo, J. & Paidesetty, S.K. (2015). Antimicrobial, analgesic, antioxidant and in silico study of synthesized salicylic acid congeners and their structural interpretation. Egyp. J. Bas. Appl. Sci. 2(4), 268-280. DOI: 10.1016/j.ejbas.2015.07.006.
  • 15. Djurendić, E., Dojčinović Vujašković, S., Sakač, M., Ajduković, J., Gaković, A., Kojić, V., Bogdanović, G., Klisurić, O. & Penov Gaši, K. (2011). Synthesis and biological evaluation of some new 2-oxazoline and salicylic acid derivatives. ARKIVOC 2011(2), 83-102. DOI: 10.3998/ark.5550190.0012.207.
  • 16. Vidhyasekaran, P. (2007). Fungal pathogenesis in plants and crops: Molecular biology and host defense mechanisms (2nd ed.). Boca Raton, USA: CRC Press.
  • 17. Wang, Y.Y., Li, B.Q., Qin, G.Z., Li, L. & Tiana, S.P. (2011). Defense response of tomato fruit at different maturity stages to salicylic acid and ethephon. Sci. Hortic. 129(2), 183-188. DOI: 10.1016/j.scienta.2011.03.021.
  • 18. Zhang, H., Ma, L., Wang, L., Jiang, S., Dong, Y. & Zheng, X. (2008). Biocontrol of gray mold decay in peach fruit by integration of antagonistic yeast with salicylic acid and their effects on postharvest quality parameters. Biol. Control 47(1), 60-65. DOI: 10.1016/j.biocontrol.2008.06.012.
  • 19. Mandal, S., Mallick, N. & Mitra, A. (2009). Salicylic acid-induced resistance to Fusarium oxysporum f. sp. lycopersici in tomato. Plant Physiol. Bioch. 47(7), 642-649. DOI: 10.1016/j. plaphy.2009.03.001.
  • 20. Yu, T. & Zheng, X.D. (2006). Salicylic acid enhances biocontrol efficacy of the antagonist Cryptococcus laurentii in apple fruit. J. Plant Growth Regul. 25(2), 166-174. DOI: 10.1007/s00344-005-0077-z.
  • 21. Panahirad, S., Zaare-Nahandi, F., Safaralizadeh, R. & Alizadeh-Salteh, S. (2012). Postharvest control of Rhizopus stolonifer in peach (Prunus persica L. Batsch) fruits using salicylic acid. J. Food Safety 32(4), 502-507. DOI: 10.1111/jfs.12013.
  • 22. Qin, X., Xiao, H., Xue, C., Yu, Z., Yang, R., Cai, Z. & Si, L. (2015). Biocontrol of gray mold in grapes with the yeast Hanseniaspora uvarum alone and in combination with salicylic acid or sodium bicarbonate. Postharvest Biol. Tec. 100, 160-167. DOI: 10.1016/j.postharvbio.2014.09.010.
  • 23. Amborabé, B., Fleurat-Lessard, P., Chollet, J. & Roblin, G. (2002). Antifungal effects of salicylic acid and other benzoic acid derivatives towards Eutypa lata: structure-activity relationship. Plant Physiol. Bioch. 40(12), 1051-1060. DOI: 10.1016/ S0981-9428(02)01470-5.
  • 24. Prithiviraj, B., Singh, U.P., Manickam, M. & Ray, A.B. (1997). Antifungal activity of anacardic acid, a naturally occurring derivative of salicylic acid. Can. J. Bot. 75(1), 207-211. DOI: 10.1139/b97-021.
  • 25. Reinheckel, H. (1960). Über halogen- und stickstoffhaltige Derivate aliphatischer Carbonsäuren, I. Die indirekte α-Bromierung von Fettsäureestern. Chem. Ber. 93(10), 2222-2229. DOI: 10.1002/cber.19600931007.
  • 26. Kwiecień, H. (1996). Synthesis and properties of new 2-alkyl-1,4-benzoxazepine derivatives. Part I. Synthesis and cyclization of 2-phenoxyalkanoic acid derivatives. Pol. J. Chem. 70, 733-741.
  • 27. Catel, Y., Aladedunye, F. & Przybylski, R. (2010). Synthesis, radical scavenging activity, protection during storage, and frying by novel antioxidants. J. Agric. Food Chem. 58(20), 11081-11089. DOI: 10.1021/jf102287h.
  • 28. Haddleton, D.M., Sahota, H.S., Taylor, P.C. & Yeate, S.G. (1996). Synthesis of polyester dendrimers. J. Chem. Soc. Perkin Trans. 1 1996(7), 649-656. DOI: 10.1039/P19960000649.
  • 29. Torlopov, M.A., Udoratina, E.V. & Kuchin, A.V. (2013). Synthesis of inulin esters of phenylcarboxylic acids. Russ. J. Org. Chem. 49(5), 702−706. DOI: 10.1134/S1070428013050114.
  • 30. Spivey, A.C. & Leese, D. (2002). Synthetic methods. Part (III) Protecting groups. Annu. Rep. Prog. Chem., Sect. B 98, 41-60. DOI: 10.1039/b111463h.
  • 31. Zakrzewski, J. & Krawczyk, M. (2006). Reactions of nitroxides with sulfur-containing compounds, Part IV: Synthesis of novel nitroxide (thio)ureas. Heteroatom Chem. 17(5), 393-401. DOI: 10.1002/hc.20228.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2b90762-6a03-4ad0-8144-913134058e40
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.