Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The influence of rapid solidification from the liquid state on the structure of Al71Ni24Fe5 alloy was studied. The samples were prepared by induction melting (ingots) and high pressure die casting into a copper mold (plates). The structure was examined by X-ray diffraction (XRD), light microscopy and high resolution transmission electron microscopy (HRTEM). The mechanism of crystallization was described on the basis of differential scanning calorimetry (DSC) heating and cooling curves, XRD patterns, isothermal section of Al-Ni-Fe alloys at 850°C and binary phase diagram of Al-Ni alloys. The fragmentation of the structure was observed for rapidly solidified alloy in a form of plates. Additionally, the presence of decagonal quasicrystalline phase D-Al70.83Fe9.83Ni19.34 was confirmed by phase analysis of XRD patterns, Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT) of transmission electron microscopy images. The metastable character of D-Al70.83Fe9.83Ni19.34 phase was observed because of the lack of thermal effects on the DSC curves. The article indicates the differences with other research works and bring up to date the knowledge about Al71Ni24Fe5 alloys produced by two different cooling rates.
Czasopismo
Rocznik
Tom
Strony
90--95
Opis fizyczny
Bibliogr. 28 poz., rys., tab., wykr.
Twórcy
autor
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland
autor
- Institute of Metallurgy and Materials Science of Polish Academy of Sciences, Kraków, Poland
autor
- Department of Engineering Materials and Biomaterials, Silesian University of Technology, Gliwice, Poland
Bibliografia
- [1] Tsai, A.P., Inoue, A. & Masumoto, T. (1989). New decagonal Al–Ni–Fe and Al–Ni–Co alloys prepared by liquid quenching. Materials Transactions, JIM. 30(2), 150-154. DOI: 10.2320/matertrans1989.30.150.
- [2] Lin, Y., Mao, S., Yan, Z., Zhang, Y. & Wang, L. (2017). The enhanced microhardness in a rapidly solidified Al alloy. Material Science and Engneering: A. 692, 182-191. DOI: 10.1016/j.msea.2017.03.052.
- [3] Kula, A., Blaz, L. & Lobry, P. (2016) Structure and properties studies of rapidly solidified Al-Mn alloys. Key Engineering Materials. 682, 199-204. DOI: 10.4028/www.scientific.net/KEM.682.199.
- [4] Lavernia, E.J. & Srivatsan, T.S. (2010). The rapid solidification processing of materials: Science, principles, technology, advances, and applications. Journal of Materials Science. 45, 287-325. DOI: 10.1007/s10853-009-3995-5.
- [5] Sukhova, O.V., Polonskyy, V.A. & Ustinovа, K.V. (2017). Structure formation and corrosion behaviour of quasicrystalline Al-Ni-Fe alloys. Physics and Chemistry of Solidstate. 18(2), 222-227. DOI: 10.15330/pcss.18.2.222-227.
- [6] Kridli, G.T., Friedman, P.A. & Boileau, J.M. (2010). Manufacturing processes for light alloys. In P.K. Mallick (Eds.), Materials, Design and Manufacturing for Lightweight Vehicles (pp. 235-274). Woodhead Publishing.
- [7] Bonollo, F., Gramegna, N. & Timelli, G. (2015). High-pressure die-casting: Contradictions and challenges. JOM: The Journal of the Minerals, Metals & Materials Society. 67, 901-908. DOI: 10.1007/s11837-015-1333-8.
- [8] Naglič, I., Samardžija, Z., Delijić, K., Kobe, S., Dubois, J.M., Leskovar, B. & Markoli, B. (2017). Metastable quasicrystals in Al–Mn alloys containing copper, magnesium and silicon. Journal of Material Science. 52, 13657-13668. DOI: 10.1007/s10853-017-1477-8.
- [9] He, Z., Ma, H., Li, H., Li, X. & Ma, X. (2016). New type of Al-based decagonal quasicrystal in Al60Cr20Fe10Si10 alloy. Scientific Reports. 6, 22337. DOI: 10.1038/srep22337.
- [10] Kühn, U., Eckert, J., Mattern, N. & Schultz, L. As-cast quasicrystalline phase in a Zr-based multicomponent bulk alloy. Applied Physics Letter. 77, 3176-3178. DOI: 10.1063/1.1326036.
- [11] Avar, B., Gogebakan, M., Yilmaz, F. (2008). Characterization of the icosahedral quasicrystalline phase in rapidly solidified Al-Cu-Fe alloys. Zeitschrift Für Kristallographie- Crystalline Materials. 223, 731-734. DOI: 10.1524/zkri.2008.1077.
- [12] Surowiec, M.R. (2017). Quasicrystals. Warsaw: Polish Scientific Publishers PWN. (in Polish).
- [13] Ishimasa, T. (2016). Mysteries of icosahedral quasicrystals: How are the atoms arranged? IUCrJ. 3, 230-231. DOI: 10.1107/S2052252516009842.
- [14] Pedrazzini, S., Galano, M., Audebert, F., Siegkas, P., Gerlach, R., Tagarielli, V.L. & Smith, G.D.W. (2019). High strain rate behaviour of nano-quasicrystalline Al93Fe3Cr2Ti2 alloy and composites. Materials Science and Engineering: A. 764, 138201. DOI: 10.1016/j.msea.2019. 138201.
- [15] Shadangi, Y., Shivam, V., Singh, M.K., Chattopadhyay, K., Basu, J. & Mukhopadhyay, N.K. (2019). Synthesis and characterization of Sn reinforced Al-Cu-Fe quasicrystalline matrix nanocomposite by mechanical milling. Journal of Alloys and Compounds. 797, 1280-1287. DOI: 10.1016/j.jallcom.2019.05.128.
- [16] Audebert, F., Prima, F., Galano, M., Tomut, M., Warren, P.J., Stone, I.C. & Cantor, B. (2002). Structural characterisation and mechanical properties of nanocomposite Al-based alloys. Materials Transactions. 43, 2017-2025. DOI: 10.2320/matertrans.43.2017.
- [17] Inoue, A. & Kimura, H. (2000). High-strength aluminum alloys containing nanoquasicrystalline particles. Materials Science and Engineering: A. 286, 1-10. DOI: 10.1016/S0921-5093(00)00656-0.
- [18] Li, F.C., Liu, T., Zhang, J.Y., Shuang, S., Wang, Q., Wang, A.D., Wang, J.G. & Yang, Y. (2019). Amorphous–nanocrystalline alloys: fabrication, properties, and applications. Materials Today Advances. 4, 100027. DOI: 10.1016/j.mtadv.2019.100027.
- [19] Qiang, J., Wang, D., Bao, C., Wang, Y., Xu, W. & Song, M. (2001). Formation rule for Al-based ternary quasi-crystals : Example of Al–Ni– Fe decagonal phase. Journal of Materials Reserach. 16(9) 2653-2660. DOI: 10.1557/JMR.2001.0364.
- [20] Audebert, F. (2005). Amorphous and nanostructured Al-Fe and Al-Ni based alloys. In Idzikowski B., Švec P., Miglierini M. (Eds.) Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors. NATO Science Series (Series II: Mathematics, Physics and Chemistry). Dordrecht: Springer.
- [21] Milman, Y.V., Sirko, A.I., Iefimov, M.O., Niekov, O.D., Sharovsky, A.O. & Zacharova, N.P. (2006). High strength aluminum alloys reinforced by nanosize quasicrystalline particles for elevated temperature application. High Temperature Materials and Processes. 25(1-2), 19-29. DOI: 10.1515/HTMP.2006.25.1-2.19.
- [22] Yadav, T.P., Mukhopadhyay, N.K., Tiwari, R.S. & Srivastava, O.N. (2007). Studies on Al-Ni-Fe decagonal quasicrystalline alloy prepared by mechanical alloying, Philosophical Magazine. 87(18-21), 3117-3125. DOI: 10.1080/14786430701355208.
- [23] Babilas, R., Młynarek, K., Łoński, W., Lis, M., Łukowiec, D., Kądziołka-Gaweł, M., Warski, T., Radoń, A. (2021). Analysis of thermodynamic parameters for designing quasicrystalline Al-Ni-Fe alloys with enhanced corrosion resistance. Journal of Alloys and Compounds. 868, 159241. DOI: 10.1016/j.jallcom.2021.159241.
- [24] Grushko, B., Lemmerz, U., Fischer, K. & Freiburg, C. (1996). The low-temperature instability of the decagonal phase in Al-Ni-Fe. Physica Status Solidi (a). 155, 17-30. DOI: 10.1002/pssa.2211550103.
- [25] Raghavan, V. (2009). Al-Fe-Ni (Aluminum-Iron-Nickel). Journal of Phase Equilibria and Diffusion. 30(4), 85-88. DOI: 10.1007/s11669-008-9452-3.
- [26] Konieczny, M., Mola, R., Thomas, P. & Kopcial, M. (2011). Processing, microstructure and properties of laminated Ni-intermetallic composites synthesised using Ni sheets and Al foils. Archives of Metallurgy and Materials. 56(3), 693-702. DOI: 10.2478/v10172-011-0076-y.
- [27] Čelko, L., Klakurková, L. & Švejcar, J. (2010). Diffusion in Al-Ni and Al-NiCr interfaces at moderate temperatures. Defect and Diffusion Forum. 297-301, 771-777. DOI: 10.4028/www.scientific.net/DDF.297-301.771.
- [28] Titran, R.H., Vedula, K.M. & Anderson, G.G. (1984). High temperature properties of equialomic FeAl with ternary additions. MRS Proceedings. 39(309), 1471-1478. DOI: 10.1557/PROC-39-309.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2b5fcfe-2b46-47b9-9f43-833ef556ab80