PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of three run-up techniques on kinetic and kinematic variables of the stag ring leap with throw-catch of the ball in rhythmic gymnastics

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to compare the effect of three run-up steps on the kinetic and kinematic variables of the stag ring leap, with throw-catch of the ball, in high-level rhythmic female gymnasts. The three run-up steps used are a chassé step, glissade, and assemblé. Methods: Seven high-level rhythmic female gymnasts participated in this study. Three run-up steps (i.e., chassé step, glissade and assemblé) were used randomly to perform a stag ring leap with throwing a ball on the jump take-off. 2D kinetic and kinematic analysis was conducted. Results: The results indicated that the assemblé step used in the run-up technique generated greater values of the rate of force development, the highest values of vertical velocity, and the best vertical displacement. In addition, the assemblé step allows for the best opening angle of the split leap and the best closest angle of the ring leg. The same was noted for the front leg’s angular velocity. Conclusion: We concluded that the assemblé step used in the run-up technique appears to favor a greater stag ring leap that meets the Code of Points’ condition for admitting the jump, as well as numerous studies that focus on improving jumping abilities in rhythmic gymnastics.
Słowa kluczowe
Rocznik
Strony
109--118
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
  • Tunisian Research Laboratory “Sport Performance Optimization”, National Centre of Medicine and Science in Sport, Tunisia.
  • Department of Individual Sports, High Institute of Sport and Physical Education of Ksar Said, Manouba University, Tunisia.
autor
  • Department of Physical Education and Sport Sciences, College of Education, Sultan Qaboos University, Sultanate of Oman.
  • Department of Individual Sports, High Institute of Sport and Physical Education of Ksar Said, Manouba University, Tunisia.
  • Tunisian Research Laboratory “Sport Performance Optimization”, National Centre of Medicine and Science in Sport, Tunisia.
  • Department of Individual Sports, High Institute of Sport and Physical Education of Ksar Said, Manouba University, Tunisia.
  • Department of Individual Sports, High Institute of Sport and Physical Education of Ksar Said, Manouba University, Tunisia.
Bibliografia
  • [1] AAGAARD P., SIMONSEN E.B., ANDERSEN JL., MAGNUSSON P., DYHRE-POULSEN P., Increased Rate of Force Development and Neural Drive of Human Skeletal Muscle Following Resistance Training, J. Appl. Physiol., 2002, 93 (4), 1318–1326.
  • [2] AJI-PUTRA R.B., SOENYOTO T., DARMAWAN A., IRSYADA R., Contribution of Leg Flexibility, Limb Length, Leg Power for the Split Leap Skills of Rhythmic Gymnastics Athletes, Int. J. Hum. Mov. Sports Sci., 2021, 9 (4), 648–653, https://doi.org/10.13189/saj.2021.090407.
  • [3] AKKARI-GHAZOUANI H., MKAOUER B., AMARA S., CHTARA M., Kinetic and Kinematic Analysis of Three Different Execution Modes of Stag Leap With and Without Throw-Catch Ball in Rhythmic Gymnastics, Sci. Gymnastics. J., 2020, 12 (3), 255–434.
  • [4] AKKARI-GHAZOUANI H., AMARA S., JEMNI M., CHTARA M., MKAOUER B., Effect of Assemblé-Step on Kinetic and Kinematic Parameters of Stag Ring Leaps With and Without Throw-Catch of The Ball in Rhythmic Gymnastics, Sci. Gymnastics. J., 2022, 14 (3), 299–310, https://doi.org/10.52165/sgj.14.3.299-310.
  • [5] AKKARI-GHAZOUANI H., MKAOUER B., AMARA S., JEMNI M., CHTARA M., Effect of Glissade-Step on Kinetic and Kinematic Variables of Stag Ring Leaps With and Without Throw-Catch of The Ball in Rhythmic Gymnastics, Sports. Biomech., 2023, 22 (2), 222–234, https://doi.org/10.1080/14763141.2022.2087535.
  • [6] ASHBY B.M., HEEGAARD J.H., Role of Arm Motion in the Standing Long Jump, J. Biomech., 2002, 35 (12), 1631–1637, https://doi.org/10.1016/S0021-9290(02)00239-7.
  • [7] BATISTA A., LEMOS M.E., LEBRE E., ÁVILA-CARVALHO L., Active and Passive Lower Limb Flexibility in High Level Rhythmic Gymnastics, Sci. Gymnastics. J., 2015, 7 (2), 55–66.
  • [8] BATISTA A., GARGANTA R., ÁVILA-CARVALHO L., Body Difficulties in Rhythmic Gymnastics Routines, Sci. Gymnastics. J., 2019, 11 (1), 37–55.
  • [9] BOTTI M., DO NASCIMENTO J.V., The Teaching-Learning-Training Process in Rhytmic Gymnastics Supported by the Ecological Theory, Sci. Gymnastics. J., 2011, 3 (1), 35–48.
  • [10] BRØND J.C., ELBÆK L., Problem Based Learning and the Use of Digital Tools, for Improving Use and Understanding of Biomechanics in Practical Sports Subjects, [in:] FROBERG K., SKOVGAARD T., Proceedings of the 2nd NORDPLUS-IDROTT Conference, University of Southern Denmark, Odense, Region of Southern Denmark, Denmark, 2013, https://www.sdu.dk//media/sidste_chance/files/om_sdu/institutter/iob/forskningsnetvaerk/nordplus2013/abstractbook.pdf
  • [11] COPPOLA S., ALBANO D., SIVOCCIA I., VASTOLA R., Biomechanical Analysis of a Rhythmic Gymnastics Jump Performed Using Two Run-Up Techniques, J. Phys. Educ. Sport., 2020, 20 (1), 37–42, https://doi.org/10.7752/jpes.2020.01005.
  • [12] DE LEVA P., Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters, J. Biomech., 1996, 29 (9),1223–1230.
  • [13] DESPINA T., GEORGE D., GEORGE T., SOTIRIS P., ALESSANDRA D.C., GEORGE K., MARIA R., STAVROS K., Short-Term Effect of Whole-Body Vibration Training on Balance, Flexibility and Lower Limb Explosive Strength in Elite Rhythmic Gymnasts, Hum. Mov. Sci., 2014, 33, 149–158, https://doi.org/10.1016/j.humov.2013.07.023.
  • [14] DI CAGNO A., BALDARI C., BATTAGLIA C., GUIDETTI L., PIAZZA M., Anthropometric Characteristics Evolution in Elite Rhythmic Gymnasts, Ital. J. Anat. Embryol., 2008, 113 (1), 29–36.
  • [15] DI CAGNO A., BALDARI C., BATTAGLIA C., GALLOTTA M.C., VIDEIRA M., PIAZZA M., GUIDETTI L., Preexercise Static Stretching Effect on Leaping Performance in Elite Rhythmic Gymnasts, J. Strength. Cond. Res., 2010, 24 (8), 1995–2000.
  • [16] DOS REIS FURTADO L.N., DE TOLEDO E., FERNANDES ANTUALPA K., CARBINATTO M.V., Ballet Movements in Rhythmic Gymnastics Routines: An Analisys From the Last Two Code of Points (2013–2016 and 2017–2020), Sci. Gymnastics. J., 2020, 12 (3), 395–406.
  • [17] FAUL F., ERDFELDER E., BUCHNER A., LANG A.G., Statistical Power Analyses Using G*Power 3.1: Tests for Correlation and Regression Analyses, Behav. Res. Methods., 2009, 41 (4), 1149–1160, https://doi.org/10.3758/BRM.41.4.1149.
  • [18] FIG, Code Of Point Rhythmic Gymnastics, Fédération Internationale de Gymnastique, Lausanne Suissland, 2020.
  • [19] FRUTUOSO A.S., DIEFENTHAELER F., VAZ M.A., FREITAS CDE L., Lower Limb Asymmetries in Rhythmic Gymnastics Athletes, Int. J. Sports. Phys. Ther., 2016, 11, 34–43.
  • [20] GATEVA M., Modified Field Test for Determining the Specific Endurance in Rhythmic Gymnastics, J. Appl. Sports. Sci., 2019, 3 (1), 3–12, https://doi.org/10.37393/jass.2019.01.1
  • [21] GORWA J., DWORAK L.B., MICHNIK R., JURKOJĆ J., Kinematic analysis of modern dance movement "stag jump" within the context of impact loads, injury to the locomotor system and its prevention, Med. Sci. Monit., 2014, 20, 1082–1089, https://doi.org/10.12659/msm.890126.
  • [22] GORWA J., MICHNIK R., NOWAKOWSKA-LIPIEC K., JURKOJĆ J., JOCHYMCZYK-WOŹNIAK K., Is it possible to reduce loads of the locomotor system during the landing phase of dance figures? Biomechanical analysis of the landing phase in Grand Jeté, Entrelacé and Ballonné, Acta. Bioeng. Biomech., 2019, 21 (4), 111–121, https://doi.org/10.37190/ABB-01429-2019-02.
  • [23] HOPKINS W.G., A New View af Statistics. A Scale of Magnitudes for Effect Statistics, Sport. Sci., 2002, www.sportsci.org/resource/stats/effectmag.html
  • [24] HOPKINS W.G., MARSHALL S.W., BATTERHAM A.M., HANIN J., Progressive Statistics for Studies in Sports Medicine and Exercise Science, Med. Sci. Sports. Exerc., 2009, 41 (1), 3–13, https://doi.org/10.1249/MSS.0b013e31818cb278.
  • [25] HUANG C., LIU G.C., SHEU T.Y., Kinematic Analysis of The Volleyball Back Row Jump Spike, Proceedings of the XVII International Symposium on Biomechanics in Sports, Perth, Western Australia, Australia, 1999, https://ojs.ub.uni-konstanz.de/cpa/article/view/4049.
  • [26] JEMNI M., The Science of Gymnastics: Advanced Concepts, Routledge, 2017.
  • [27] JENSEN R.L., Rate of Force Development and Time to Peak Force During Plyometric Exercises, Proceedings of the XXVI Conference of the International Society of Biomechanics in Sports, Northern Michigan University, 2008, https://commons.nmu.edu/cgi/viewcontent.cgi?article=1027&context=facwork_conferencepapers
  • [28] KOMANTHI K., THEODOSIS E., APOSTOLOS S., Eating Disorders in the World of Sport: The Experiences of Rhythmic Gymnasts, Biol. Exerc., 2012, 8 (2), 19–31, https://doi.org/10.4127/jbe.2012.0057.
  • [29] KWITNIEWSKA A., DORNOWSKI M., HÖKELMANN A., Quantitative and Qualitative Analysis of International Standing in Group Competition in the Sport of Rhythmic Gymnastics, Balt. J. Health. Phys. Act., 2009, 1 (2), 118–125, https://doi.org/10.2478/v10131-009-0014-9.
  • [30] LAFFAYE G., WAGNER P., Eccentric Rate of Force Development Determines Jumping Performance, Comput. Methods. Biomech. Biomed. Engin., 2013, 16, 82–83.
  • [31] MKOUER B., AMARA S., TABKA Z., Split Leap With and Without Ball Performance Factors in Rhythmic Gymnastic, Sci. Gymnastics. J., 2012, 4 (2), 75–81.
  • [32] NEMTSEV O., DORONIN A., NEMTSEVA N., SUKHANOV S., SHUBIN M., Features of Takeoff Phase in Long Jumps With Various Run-Up Lengths, Proceedings of the XXXII International Conference of Biomechanics in Sports, Johnson City, TN, USA, 2014, https://ojs.ub.uni-konstanz.de/cpa/article/view/6066
  • [33] ODDSSON L., What Factors Determine Vertical Jumping Height?, Proceedings of the V International Symposium on Biomechanics in Sports, Athens, Greece, 1987, https://ojs.ub.uni-konstanz.de/cpa/article/view/2325.
  • [34] POLAT S.Ç., The Effect of Two Different Take Offs on Split Leap and Stag Leap With Ring Parameters in Rhythmic Gymnastics, Pedagogical. Res., 2018, 3 (4), 13, https://doi.org/10.20897/pr/3905.
  • [35] PURENOVIĆ T., BUBANJ S., POPOVIĆ R., STANKOVIĆ R., BUBANJ R., Comparative Kinematics Analysis of Different Split Front Leaps, Sport. Sci., 2010, 3 (1), 13–20.
  • [36] PUTRA R.B.A., SOENYOTO T., DARMAWAN A., IRSYADA R., Basic Movements of the Split Leap Rhythmic Gymnastics, Proceedings of the 5th International Seminar of Public Health and Education, ISPHE, Universitas Negeri Semarang, Semarang, Indonesia, 2020, https://eudl.eu/doi/10.4108/eai.22-7-2020.2300304.
  • [37] RODRÍGUEZ-ROSELL D., PAREJA-BLANCO F., AAGAARD P., GONZÁLEZ-BADILLO J.J., Physiological and Methodological Aspects of Rate of Force Development Assessment in Human Skeletal Muscle, Clin. Physiol. Funct. Imaging., 2018, 38 (5),743–762, https://doi.org/10.1111/cpf.12495.
  • [38] SIERRA-PALMEIRO E., BOBO-ARCE M., PÉREZ-FERREIRÓS A., FERNÁNDEZ-VILLARINO M.A., Longitudinal Study of Individual Exercises in Elite Rhythmic Gymnastics, Front. Psychol., 2019, 10, 1496, https://doi.org/10.3389/fpsyg.2019.01496.
  • [39] SKOPAL L., NETTO K., AISBETT B., TAKLA A., CASTRICUM T., The Effect of a Rhythmic Gymnastics-Based Power-Flexibility Program on the Lower Limb Flexibility and Power of Contemporary Dancers, Int. J. Sports. Phys. Ther., 2020, 15 (3), 343–364.
  • [40] TAI W.H., WANG L.I., PENG H.T., Biomechanical Comparisons of One-Legged and Two-Legged Running Vertical Jumps, J. Hum. Kinet., 2018, 64 (1), 71–76, https://doi.org/10.1515%2Fhukin-2017-0185.
  • [41] VANRENTERGHEM J., LEES A., LENOIR M., AERTS P., DE CLERCQ D., Performing The Vertical Jump: Movement Adaptations For Submaximal Jumping, Hum. Mov. Sci., 2004, 22 (6), 713–727.
  • [42] WAGNER J.M., RHODES J.A., PATTEN C., Reproducibility and Minimal Detectable Change of Three-Dimensional Kinematic Analysis of Reaching Tasks in People With Hemiparesis After Stroke, Phys. Ther., 2008, 88 (5), 652–663, https://doi.org/10.2522/ptj.20070255.
  • [43] ZAR J., Multiple comparisons, Bio. Stat. Anal., 1984, 1, 185–205.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2b53d4d-fbfe-43e1-9e9e-2da1b0905413
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.