PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical simulation of a temperature field during multi-beads surface welding

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The calculation results of the temperature field during multi-beads GMAW (Gas Metal Arc Welding) cladding of the S355 steel plate are presented in the paper. Numerical simulations were performed using the SysweldR program. Two of Goldak’s heat source models were chosen for calculating the temperature field for each weld bead. The original article achievement is, by selecting the right heat source model and heat loading of the finite elements, obtaining an irregular shape of the fusion zone. This irregular shape of the fusion zone is very complicated to obtain using other commercial programs for numerical welding simulation. The calculation results were verified by the dimensions (critical temperatures) of the heat affected zones (HAZ) determined in the experiment, obtaining a satisfactory agreement.
Rocznik
Strony
49--59
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Department of Technological Engineering, University of Zilina, Zilina, Slovakia
  • Department of Technological Engineering, University of Zilina, Zilina, Slovakia
  • Department of Technological Engineering, University of Zilina, Zilina, Slovakia
autor
  • Department of Technological Engineering, University of Zilina, Zilina, Slovakia
autor
  • Department of Technology and Automation, Czestochowa University of Technology, Czestochowa Poland
  • Department of Technology and Automation, Czestochowa University of Technology, Czestochowa Poland
Bibliografia
  • 1] Sladek, A., Patek, M., & Mičian, M. (2017). Behavior of steel branch connections during fatigue loading. Archives of Metallurgy and Materials, 62(3), 1597-1601. DOI: 10.1515/amm-2017-0244.
  • [2] Mičian, M., & Konar, R. (2017). Repairs of damaged castings made of graphitic cast iron by means of brazing. Archives of Foundry Engineering, 17(3), 91-96. DOI: 10.1515/afe-2017-0097.
  • [3] Winczek, J., Gucwa, M., Mician, M., Konar, R., & Parzych, S. (2019). The evaluation of the wear mechanism of high-carbon hardfacing layers. Archives of Metallurgy and Materials, 64(3), 1111-1115.
  • [4] Lindgren, L.E., Runnemalm, H., & Nasstrom, M.O. (1999). Simulation of multipass welding of a thick plate. International Journal for Numerical Methods in Engineering, 44, 1301-1316.
  • [5] Borjesson, L., & Lindgren, L.E. (2001). Simulation of multipass welding with simultaneous computation of material properties. Journal of Engineering Materials and Technology, 123(1), 106-111. DOI: 10.1115/1.1310307.
  • [6] Fassani R.N.S., & Trevisan O.V. (2003). Analytical modeling of multipass welding process with distributed heat source. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 25(3), 303-305.
  • [7] Deng, D., Murakawa, H., & Liang, W. (2008). Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe. Computational Materials Science, 42, 234-244.
  • [8] Heinze, C., Schwenk, C., & Rethmeier, M. (2012). Numerical calculation of residual stress development of multi-pass gas metal arc welding. Journal of Constructional Steel Research, 72, 12-19. DOI: 10.1016/j.jcsr.2011.08.011.
  • [9] Gao, H., Dutta, R.K., Huizenga, R.M., Amirthalingam, M., Hermans, M.J.M., & Richardson, I.M. (2014). Pass-by-pass stress evolution in multipass welds. Science and Technology of Welding and Joining, 19(3), 256-264. DOI: 10.1179/1362171813Y.0000000191.
  • [10] Ganesh, K.C., Balasubramanian, K.R., Vasudevan, M., Vasantharaja, P., & Chandrasekhar, N. (2016). Effect of multipass TIG and activated TIG welding process on the thermo-mechanical behavior of 316LN stainless steel weld joints. Metallurgical and Materials Transactions B, 47B, 1347-1362. DOI: 10.1007/s11663-016-0600-6.
  • [11] Giętka, T., Ciechacki, K., & Kik, T. (2016). Numerical simulation of duplex steel multipass welding. Archives of Metallurgy and Materials, 61(4), 1975-1984. DOI: 10.1515/amm-2016-0319.
  • [12] Novotny, L., de Abreu, H.F.G., de Miranda, H.C., & Bereš, M. (2016). Simulations in multipass welds using low transformation temperature filler material. Science and Technology of Welding and Joining, 21(8), 680-687. DOI: 10.1080/13621718.2016.1177989.
  • [13] Konar, R., & Patek, M. (2017). Numerical simulation of dissimilar weld joint in Sysweld simulation software. Tehnicki Vjesnik - Technical Gazette, 24(1), 137-142. DOI: 10.17559/TV-20150513074103.
  • [14] Sajek, A., (2019). Application of FEM simulation method in area of the dynamic of cooling AHSS steel with a complex hybrid welding process. Welding in the World, 63, 1065-1073. DOI: 10.1007/s40194-019-00718-z.
  • [15] Kik, T., Moravec, J., & Novakova, I. (2019). Numerical simulations of X22CrMoV12-1 steel multilayer welding. Archives of Metallurgy and Materials, 64(4), 1441-1448.
  • [16] Reed, R.C., & Bhadeshia, H.K.D. (1994). A simple model for multipass steel welds. Acta Metallurgica Materialia, 42, 3663-3678.
  • [17] Joshi, S., Hildebrand, J., Aloraier, A.S., & Rabczuk, T. (2013). Characterization of material properties and heat source parameters in welding simulation of two overlapping beads on a substrate plate. Computational Materials Science, 69, 559-565.
  • [18] Winczek, J. (2011). New approach to modeling of temperature field in surfaced steel elements. International Journal of Heat and Mass Transfer, 54, 4702-4709.
  • [19] Winczek, J. (2017). Modeling of temperature field during multi-pass GMAW surfacing or rebuilding of steel elements taking into account the heat of the deposit metal. Applied Sciences, 7(1), 6, 1-19. DOI: 10.3390/app7010006.
  • [20] Kik, T., Moravec, J., & Novakova, I. (2018). Application of numerical simulations on 10GN2MFA steel multilayer welding. Dynamical system in applications - 14th International Conference on Dynamical Systems, Lodz, Poland. 249, 193-204. DOI: 10.1007/978-3-319- 96601-4_18.
  • [21] Mičian, M., et al. (2020). Investigation of welds and Heat Affected Zones in weld surfacing steel plates taking into account the bead sequence. Materials, 13, 5666. DOI: 10.3390/ma13245666.
  • [22] Konar, R., Mician, M., & Zrak, A. (2018). Lap weld joint modelling and simulation of welding in programme SYSWELD. XXII Slovak-Polish Scientific Conference on Machine Modelling and Simulations 2017 (MMS 2017), 157, 02018, DOI: 10.1051/matecconf/201815702018.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2aec06e-a09a-4d7b-ac87-f37b88483700
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.