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conditions affecting the engine operation. Toxicity of the exhaust gases is also influenced by the 
types of fuel and lubricating oil used. 

Factors determining the global emissions of substances contained in exhaust gases of marine 
engines are classified and described in detail in [1, 2]. 

The process of modeling the emission of toxic compounds in the exhaust of a marine engine is 
very complex, and it requires the input data that can be divided into four fundamental groups [9]: 
 vessel parameters – length, breadth, draft, technical condition of the propulsion system, 

propulsion type (including the type and number of engines), type and number of screw 
propellers, etc.; 

 vessel motion parameters – velocity and heading; 
 external conditions – wind force and direction, air and water temperature, atmospheric pressure, 

humidity, sea state; 
 number of vessels, taking into account their categories. 

Models of emissions from land transport, which are made in Europe, cannot be used to assess 
emissions from ships. due to the difference of both hydro-meteorological conditions and the 
specifics of the ship operation. 

The model of toxic emissions in the exhaust gases of marine engines, STEAM (Ship Traffic 
Emission Assessment Model), which is presented in [3],  is based on data transmitted by AIS, 
which is a basis of the calculations for determining emissions factors related to the emissions  
of harmful compounds in exhaust gases. In this model, however, simplifying assumptions were not 
avoided either, which may result in the fact that the determined emissions factors do not reflect the 
real emissions value.  

 

2. Theoretical foundations for determining the ship's resistance and the power of the main 
propulsion system  

 
In order to give a vessel a certain velocity, the main propulsion engine has to provide adequate 

power to the propeller, which is necessary to overcome the resistance to the motion of the ship, 
and the energy loss of the propeller, shafting, gears, and couplings. A general motion equation  
of a ship may be presented as follows [4,5]: 

 

െሺ݉ ൅݉ଵଵሻ ∙
ௗ௏

ௗ௧	
– ܴ െ ∆ܶ ൅ ܶ ൌ 0     (1) 

 
where:  
 
m – weight of the ship, propellers and rudder, 
m11 - weight of accompanying water, 
R – ship's total resistance, 
T – propeller thrust 
T – thrust deduction.. 

 
The total resistance R of the vessel depends on the size of the vessel, its velocity, and the shape 

of its hull. The resistance is also affected by external factors such as waves of the sea, hull fouling, 
draft variations, etc. 

It can therefore be concluded that the value of the maximum demand required depends 
primarily on the dimensions of the ship and its instantaneous velocity.  

The value of the propeller thrust depends on the diameter of the propeller, its geometrical 
shape, speed, and the velocity of the vessel. The propeller thrust created must equalize the total 



resistance of the ship R and the thrust deduction T, acting on the hull in the direction opposite  
to its motion. 

For steady movement (dv/dt=0) equation (1) becomes: 
 

R + T = T       (2) 
The total resistance of the ship is the sum of the resistance components 
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where: 
RF – frictional resistance, 
RVP – viscous pressure resistance (form resistance) 
RW – wave resistance, 
RD – additional resistance, 
S – wetted surface [m2], 
ρ – water density [kg·m-3], 
v – flow velocity around the hull. [m·s-1], 
cF– frictional resistance coefficient, 
cVP – viscous pressure resistance (form resistance) coefficient, 
cW – wave resistance coefficient, 
k – additional resistance coefficient (assumed k = 1,1 ÷ 1,2), 
cT – total resistance coefficient. 

 
Frictional resistance is related to the tangential stresses that are induced on the wetted surface 

of the hull due to the viscosity. Frictional resistance coefficients cF  thus depends primarily on the 
Reynolds number, expressed as  

ܴ݊ ൌ ௏௅

జ
       (4) 

where:  
V – velocity of the vessel, 
L – length of the vessel, 
߭ – kinematic viscosity coefficient of water. 

 
 Wave resistance is related to the wave pattern generated by a moving ship on the water 

surface without viscosity (ideal fluid), i.e. on the phenomena whose existence is conditioned  
by gravity. Therefore, wave resistance coefficient cW depends primarily on the Froude number. 

݊ܨ ൌ ௏

ඥ௚௅
       (5) 

 
 Viscous pressure resistance is related to the effects of viscosity on the pressure distribution 

and hence to form of the the waves pattern. Viscous pressure resistance coefficient thus depends 
both on the Reynolds and Froude numbers. 

Additional; resistance RD is primarily composed of appendage resistance RAP  and air resistance 
RAA.  

Appendages affecting the total resistance of the ship are such components as bilge keels, shaft 
brackets, shafts, propeller screws, rudders and shaft bossings on the hull.  

Air resistance around the emersed part of the ship is of viscous character. The components of 
air resistance are frictional resistance and viscous pressure resistance. Air resistance results from 
both the relative motion of the ship in still air, and from the absolute motion of the air, i.e. the 
wind. Air resistance is strongly dependent on the size and shape of the the emersed part of the ship 



(especially its superstructures), and the volume and direction of the relative speed of the air. The 
formula for air resistance takes the form: 

ܴ஺஺ ൌ ஺ܿ஺
ఘಲ
ଶ
	 ௐܸோ

ଶ  (6)      ்ܣ	

 
where: 
 ,஺– air densityߩ 
 ௐܸோ – relative air velocity, 
 ,midship cross section area of the emersed part of the ship – ்ܣ
cAA – air resistance coefficient, 

 
The total resistance of the ship R is the sum of the following resistance components: frictional 

RF, form RFV, wave RW and additional RD 

 
ܴ ൌ ܴி ൅	R୚୔ ൅ R୛ ൅ Rୈ =  7                  O)G, A,M, , , L, ,(   

  
This force can be presented as a function of : instantaneous speed of the ship , hull length L, 

water density , kinematic viscosity coefficient of water , vector M, characterizing the inertia  
of the ship, vector A , containing information about the variable motion resistances of the ship 
associated with a given water region (water depth, width of the fairway (channels), etc.), vector G, 
describing the ambient conditions (e.g. ambient pressure and temperature), and vector O, 
describing the navigational conditions (wind force and direction, wave height and length, etc.)[2]. 

 Since the resistance coefficients cF, cVP = f (Rn) and cW, cVP = f (Fn), it was assumed for 
modeling purposes that the values necessary to perform the calculations for a given category of a 
tramp vessel are the generated values of the vessel's length L and its instantaneous speed . 

The total hull resistance ෨ܴ 	 is presented by the equation: 
 

෨ܴ ൌ ሚܵ ఘ∙௩෤
మ

ଶ
ሺܿி ൅ ܿௐሻ ൅ ෨ܴ஺஺     (8) 

 
where: 

 ሚܵ ൌ
∑ ௌ೔
೔స೙
೔సభ

௡
  for i=1,2, ...,n  – average wetted area, computed using n relationships,  

 ,෤ – vessel speed generated on the basis of statistical dataݒ 
	 ෨ܴ஺஺ – air resistance generated on the basis of statistical data, 

 
Frictional resistance coefficient was computed using the ITTC formula [5]. 

 

ܿி಺೅೅಴ ൌ
଴,଴଻ହ
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      (9) 

 
Since the outer surface of the hull (even with high-quality coatings), cannot be considered 

hydrodynamically smooth, the calculations took into consideration also the hull roughness 
expressed as an additive hull roughness coefficient cF  using the formula [5,6]: 

∆ܿி ൌ ൤105 ቀ௞ೞ
௅
ቁ
ଵ/ଷ

െ 0,64൨ ∙ 10ିଷ     (10) 

 
The coefficient of friction was calculated from 
 

ܿி ൌ 	 ܿி಺೅೅಴ ൅ ∆ܿி             (11) 
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Fig. 5 Algorithm being the basis for calculations performed by the MEFSAS program. 

 

 



4. Conclusions 

 
Continuous development of maritime transport, with the ever increasing demands  

on environmental protection, high costs, and problems associated with the measurement  
of emissions of harmful compounds in the exhaust of ships in transit, as well as the lack  
of sufficiently accurate methods for the determination of indirect emissions, were the main reason 
for undertaking research studies on modeling the emissions processes of marine diesel main 
propulsion engines under the marine operating conditions [2]. 

The current worldwide research on atmospheric air pollution caused by the emission  
of harmful compounds from ships' engines, based on a simplified input data cannot be used  
to estimate emissions within e.g. the Baltic Sea or the Gulf of Gdansk, since they lead  
to a significant underestimation of emissions, mainly because of insufficient detail of the marine 
traffic characteristics. Besides, the known models of the harmful compound emissions in exhaust 
gases of marine engines, which are used primarily to support local and regional model studies 
concerning air quality, are deterministic models with varying degrees of accuracy which depends 
on the resolution of the spatial allocation of emissions at a particular location and time. Moreover, 
the accuracy of a given model depends to a large extent on the amount and quality of input data, 
determined by financial resources earmarked for the creation, implementation, and calibration  
of the model [2]. 

The mathematical model of toxic emissions proposed in [2], which is based on stochastic 
processes using Monte Carlo methods, allows for a rapid analysis of marine traffic in a particular 
area, and for calculation with considerable accuracy of the emission intensity of each harmful 
compound, and their weight in relation to both a single vessel, and to vessels remaining in the area 
for a specified period of time. Furthermore, the model developed is the first fully predictive model, 
and the accompanying computer simulation program allows the analysis of marine traffic, and 
emission intensity at the selected point of time, taking into account hydro-meteorological 
conditions corresponding to that point.   

The mathematical model was the basis for the development of a computer program that allows 
to solve the model's equations. The results generated by the program can be saved to a file 
compatible with Microsoft Excel, which allows for their analysis independent of the software used 
by the model. Additionally. it is possible to visualize the simulation results in the form of easily 
readable charts showing: the number of vessels in the analyzed water area during the day, with the 
option of splitting the vessels by their type, the emissions of various toxic compounds by the day 
and vessel type, as well as the total emissions of individual compounds from all vessels on each of 
the days of the simulation. Another feature of the program is the is the possibility to visualize the 
motion of the simulated vessels in the analyzed water region on the basis of the simulation results. 
This feature is based on the animation showing the vessels plotted on the chart of the relevant area. 

The simulation program developed is open to any modifications related to the specifics of the 
analyzed issue, and, what is more, because of its versatility, it may be implemented into any area 
of marine operations very quickly after the introduction of a new set of input data. 
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