Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Developing an effective and safe cancer therapy could significantly reduce the number of deaths and improve the quality of life of treated patients. Nowadays medicine has developed a wide range of anticancer chemotherapeutics but at the same time there is a lack of effective drug delivery methods. Therefore, the development of the targeted drug delivery system which will selectively release drug into the cancer cells is a key challenge of modern medicine. The main aim of the presented research was to investigate the targeting effect of a drug delivery system based on the controlled release of dextran nanoparticles containing the anticancer drug – doxorubicin from the alginate microspheres coated with chitosan multilayers. During the research the physicochemical properties of the alginate microspheres and its stability in the physiological environment were investigated. Moreover, the kinetics of the nanoparticles with doxorubicin release from the alginate microspheres covered with chitosan multilayers was characterized, depending on the thickness of the chitosan layer. Further, the cytotoxicity study of the alginate microspheres covered with chitosan multilayer and containing nanoparticles was performed to determine the therapeutic effect of the released nanoparticles with doxorubicin on the HeLa cells during the in vitro cell culture.
Czasopismo
Rocznik
Tom
Strony
405--–417
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
- Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1 Street, 00-645 Warsaw, Poland
autor
autor
autor
Bibliografia
- 1. Adepu S., Ramakrishna S., 2021. Controlled drug delivery systems: current status and future directions. Molecules, 26, 5905. DOI: 10.3390/molecules26195905.
- 2. BÜCHI, 2016. Operation Manual, Encapsulator B-395 Pro. BÜCHI Labortechnik AG. Budhian A., Siegel S.J., Winey K.I., 2007. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int. J. Pharm., 336, 367–375. DOI: 10.1016/j.ijpharm.2006.11.061.
- 3. Chan O.C.M., So K.-F., Chan B.P., 2008. Fabrication of nano-fibrous collagen microspheres for protein delivery and effects of photochemical crosslinking on release kinetics. J. Control. Release, 129, 135–143. DOI: 10.1016/j.jconrel.2008.04.011.
- 4. Dobrovolskaia M., McNeil S.E. (Eds.), 2013. Handbook of immunological properties of engineered nanomaterials. Series: Frontiers in nanobiomedical research, Vol. 1. World Scientific, New Jersey.
- 5. Forster R.E., Thürmer F., Wallrapp C., Lloyd A.W., Macfarlane W., Phillips G.J., Boutrand J-P., Lewis A.L., 2010. Characterisation of physico-mechanical properties and degradation potential of calcium alginate beads for use in embolization. J. Mater. Sci.: Mater. Med. 21, 2243-2251. DOI: 10.1007/s10856-010-4080-y.
- 6. Gui R., Wang Y., Sun J., 2014. Encapsulating magnetic and fluorescent mesoporous silica into thermosensi- tive chitosan microspheres for cell imaging and controlled drug release in vitro. Colloids Surf., B, 113, 1–9.DOI: 10.1016/j.colsurfb.2013.08.015.
- 7. Hoare T., Young S., Lawlor M.W., Kohane D.S., 2012. Thermoresponsive nanogels for prolonged duration local anesthesia. Acta Biomater., 8, 3596–3605. DOI: 10.1016/j.actbio.2012.06.013.
- 8. Honary S., Zahir F., 2013. Effect of zeta potential on the properties of nano-drug delivery systems - a review (Part 2). Trop. J. Pharm. Res., 12, 265–273. DOI: 10.4314/tjpr.v12i2.20.
- 9. Lammer J., Malagari K., Vogl T., et al. 2010. Prospective randomized study of doxorubicin- eluting-bead embolization in the treatment of hepatocellular carcinoma: Results of the PRECISION V study. Cardiovasc. Intervent. Radiol., 33, 41–52. DOI: 10.1007/s00270-009-9711-7.
- 10. Laurent A., 2007. Microspheres and nonspherical particles for embolization. Tech. Vasc. Interventional Radiol., 10, 248–256. DOI: 10.1053/j.tvir.2008.03.010.
- 11. Mu C., Guo J., Li X., Lin W., Li D., 2012. Preparation and properties of dialdehyde carboxymethyl cellulose crosslinked gelatin edible films. Food Hydrocolloids, 27, 22–29. DOI: 10.1016/j.foodhyd.2011.09.005.
- 12. Muangsiri W., Kirsch L.E., 2006. The protein-binding and drug release properties of macromolecular conjugates containing daptomycin and dextran. Int. J. Pharm., 315, 30–43. DOI: 10.1016/j.ijpharm.2006.02.016.
- 13. Namur J., Citron S.J., Sellers M.T., Dupuis M.H., Wassef M., Manfait M., Laurent A., 2011. Embolization of hepatocellular carcinoma with drug-eluting beads: Doxorubicin tissue concentration and distribution in patient liver explants. J. Hepatol., 55, 1332–1338. DOI: 10.1016/j.jhep.2011.03.024.
- 14. Qin X.Y., Liu X.X., Li Z.Y., Guo L.Y., Zheng Z.Z., Guan H.T., Song L., Zou Y.H., Fan T.Y., 2019. MRI detectable polymer microspheres embedded with magnetic ferrite nanoclusters for embolization: in vitro and in vivo evaluation. Int. J. Nanomed., 14, 8989–9006. DOI: https://doi.org/10.2147/IJN.S209603.
- 15. Su J., Hu B-H, Lowe Jr. W.L., Kaufman D.B., Messersmith P.B., 2010. Anti-inflammatory peptide-functionalized hydrogels for insulin-secreting cell encapsulation. Biomaterials, 31, 308–314. DOI: 10.1016/j.biomaterials.2009.09.045.
- 16. Tiwari G., Tiwari R., Sriwastawa B., Bhati L., Pandey S., Pandey P., Bannerjee S.K., 2012. Drug delivery systems: An updated review. Int. J. Pharm. Investig., 2, 2–11. DOI: 10.4103/2230-973X.96920.
- 17. Vargason A.M., Anselmo A.C., Mitragotri S., 2021. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng., 5, 951–967. DOI: 10.1038/s41551-021-00698-w.
- 18. Walczak A., Monarska A., Ciach T., 2014. Human cell encapsulation in hydrogel microspheres. EYEC monograph: 3rd European Young Engineers Conference. Warsaw, Poland, 29–30 April 2014, 119–131.
- 19. Wang, C.Y., Hu, J., Sheth, R.A., Oklu, R., 2020. Emerging embolic agents in endovascular embolization: an overview. Prog. Biomed. Eng., 2, 012003. DOI: 10.1088/2516-1091/ab6c7d.
- 20. Wasiak I., Kulikowska A., Janczewska M., Michalak M., Cymerman I.A., Nagalski A., Kallinger P., Szymanski W.W., Ciach T., 2016. Dextran nanoparticle synthesis and properties. PLoS ONE, 11, e0146237. DOI: 10.1371/journal.pone.0146237.
- 21. Weber C., 1931. Zum Zerfall eines Flüssigkeitsstrahles. Z. angew. Math. Mech., 11, 136–154. DOI: 10.1002/zamm.19310110207.
- 22. Weng L., Rostamzadeh P., Nooryshokry N., Le H.C., Golzarian J., 2013. In vitro and in vivo evaluation of biodegrad- able embolic microspheres with tunable anticancer drug release. Acta Biomater., 9, 6823–6833. DOI: 10.1016/j.actbio.2013.02.017.
- 23. Wu J., Kong T., Yeung K.W.K., Shum H.C., Cheung K.M.C., Wang L., To M.K.T., 2013. Fabrication and characterization of monodisperse PLGA–alginate core–shell microspheres with monodisperse size and homogeneous shells for controlled drug release. Acta Biomater., 9, 7410–7419. DOI: 10.1016/j.actbio.2013.03.022.
- 24. Xiao C., Sun F., 2013. Fabrication of distilled water-soluble chitosan/alginate functional multilayer compositemicrospheres. Carbohydr. Polym., 98, 1366–1370. DOI: 10.1016/j.carbpol.2013.07.068.
- 25. Yang Q., Owusu-Ababio G., 2000. Biodegradable progesterone microsphere delivery system for osteoporosis therapy. Drug Dev. Ind. Pharm., 26, 61–70. DOI: 10.1081/ddc-100100328.
- 26. Zhang J.T., Keller T.F., Bhat R., Garipcan B., Jandt K.D., 2010. A novel two-level microstructured poly(𝑁-isopropylacrylamide) hydrogel for controlled release. Acta Biomater., 6, 3890–3898. DOI: 10.1016/j.actbio.2010.05.009.
- 27. Zhao H., Heindel N.D., 1991. Determination of degree of substitution of formyl groups in polyaldehyde dextran by the hydroxylamine hydrochloride method. Pharm. Res., 8, 400–402. DOI: 10.1023/a:1015866104055.
- 28. Zhou X., Kong M., Cheng X.J., Feng C., Li J., Li J.J., Chen X.G., 2014. In vitro and in vivo evaluation of chitosan microspheres with different deacetylation degree as potential embolic agent. Carbohydr. Polym., 113, 304–313. DOI: 10.1016/j.carbpol.2014.06.080.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2a2b665-00ba-4b94-af22-b5ebe007951c