
 

Int. J. of Applied Mechanics and Engineering, 2023, vol.28, No.2, pp.49-63 
DOI: 10.59441/ijame/168331 

 
LUBRICATION OF ASYMMETRIC ROLLERS CONSIDERING VISCOSITY 

AS FUNCTION OF MEAN TEMPERATURE 
 

Swetha Lanka 
Research Scholar, Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation 

Guntur-522502, INDIA 
Department of Mathematics, Sir C R Reddy College of Engineering, Eluru-534007, A.P., INDIA 

 
Venkata Subrahmanyam Sajja* 

Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation 
Guntur-522502, INDIA 

E-mail: subrahmanyam@kluniversity.in 
 

Dhaneshwar Prasad 
Department of Mathematics, Kanchi Mamunivar Government Institute for Post Graduate Studies 

 and Research, Puducherry-605008, INDIA 
 
 

A theoretical analysis of an asymmetric roller bearing system with cavitation that is hydro-dynamically lightly 
loaded and lubricated by a thin, incompressible fluid is presented. The lubricant adheres to the non-Newtonian 
Bingham plastic fluid concept, in which the viscosity of the fluid should change depending on the mean film 
temperature. The continuity and momentum equations, which regulate fluid flow, are first solved analytically and 
then numerically using MATLAB. Through graphs and tables, some key bearing features are addressed and further 
explained. This leads to the conclusion that there is a discernible difference between Newtonian and non-Newtonian 
fluids in terms of pressure, temperature, load, and traction. The findings are good in line with the body of literature. 
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1. Introduction 

 
 Many technical applications depend on the fluid film lubrication technique, which is widely used in 
machine devices, motors, super gadgets, cams and skeletal joints [1]. 
 On surfaces that are subject to fluid scouring, hydrodynamic lubrication is a technique used to reduce 
wear and friction. Adding the right liquid with the intention that it penetrates the contact area between the 
scouring surfaces and creates a thin layer is the typical purpose of hydrodynamic lubrication. This coating 
effectively lowers friction and wear by keeping the surfaces from coming into touch. Extremely high loads, 
peak speeds, and extreme slip situations are ongoing demands placed on bearings. For example, the viscosity 
of oil varies continuously with temperature and pressure in the high pressure area [2]. 
Using an incompressible power-law fluid, Prasad et al. [2] published a study on the thermo-hydrodynamic 
lubrication of line contact. There is a significant difference between Newtonian and non-Newtonian fluids in 
terms of temperature, pressure, load, and traction, according to the pressure and heat equations, which depend 
on the consistency, rolling ratio, and power-law parameter. In order to investigate the thermo-hydrodynamic 
effect for substantially loaded journal bearings, Prasad et al. [1] used the power-law model. The load ratio 
drops with a rise in the power-law index “n”, which is based on the assumption that the lubricant's consistency 
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changes with both pressure and also mean temperature. Using incompressible, power-law lubricants, including 
Newtonian, in isothermal and adiabatic conditions, Sajja and Prasad [3] investigated the theoretical 
characterization of HDL of anti-symmetric surfaces. The load with the flow index “n” and pressure both 
significantly increase for a constant value of the rolling ratio parameter.  
 The properties of a non-Newtonian Bingham plastic fluid flow have long been used to describe the 
behaviour of fluids in general. Additionally, they have been used to show how melts and slurries behave in 
moulds and during designed handling [4, 5]. The basic slider bearing and journal bearing in one dimension 
were the subject of investigation, and a it was concluded that any surface might have had rigid “cores” added 
to it. In addition, Christopher Dorier and John Tichy introduced a model of the behaviour of fluids that are 
similar to Bingham's, which exhibit a yield stress [4]. Revathi et al. [6] recently investigated non-Newtonian 
lubrication of asymmetric rollers for a highly stacked rigid system using an incompressible Bingham plastic 
fluid in rolling/sliding line contact while modifying the fluid viscosity with hydrodynamic pressure. The 
findings, particularly the pressure, load, and traction forces, are well in line with the body of currently available 
literature. Distributions of lubricant velocity are shown. Additionally, Revathi et al. [7] investigated a topic 
pertaining to the lubricating properties of anti-symmetric rollers using a non-Newtonian incompressible 
Bingham plastic fluid. For both Newtonian and non-Newtonian fluids, the temperatures, pressures, loads, and 
traction forces, in particular, are in good agreement with prior findings. 
 The goal of this study, in light of the aforementioned discussion, is to examine the thermal effects of 
an incompressible Bingham plastic fluid used to lubricate asymmetric rollers in a lightly loaded rolling/sliding 
inelastic system under the behaviour of line contact. The viscosity of the lubricant follows Roelands model 
and changes with pressure and temperature. Rolling ratios are used to assess how pressure, load, and traction 
are affected as surfaces slide and roll. It is presumed that the viscosity changes with mean temperature. 
 
2. Theoretical model 
 
 A lightly loaded rigid system with asymmetric roller bearings using non-Newtonian incompressible 
lubricant is considered in this work to account for the Bingham plastic fluid. Both surfaces in this study have 
the same radius and are moving at different velocities. The fact that the lower surface is moving faster than the 
upper surface is also obvious. The physical diagram of the flow pattern is presented in Fig. (1). 
 

 
 

Fig.1. Lubrication of asymmetric rollers 
 
2.1. Theoretical model 
 
 Under common presumptions [8], the following governing equations, which regulate the 
incompressible fluids flow, are taken into account:  
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where, respectively, “p” denotes the hydrodynamic pressure and “” the lubricant shear stress. For a Bingham 
plastic fluid, the fundamental equation is provided by [9]: 
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u
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  (2.3) 

 
where   is the lubricant viscosity taken by [10]: 
 

    m 0T T
0e     (2.4) 

 
and equation to be used to determine the film's thickness is  
 

  
2

0
x

h h
2R

   (2.5) 

 
R represents the radius of the ‘equivalent cylinder’. 
 
2.2. Boundary conditions 
 
For this problem, the upper and lower surfaces boundary conditions are assumed to be  
 
  at ,1u U y h   (2.6) 
 
  at ,2u U y h    (2.7) 
 
  at ,p 0 x    (2.8) 
 

  and at 2
dp

p 0 0 x x
dx

    (2.9) 

 
where 1U and 2U  are speeds of the rollers. 
Equation (2.2) is integrated by making use of the aforementioned “boundary conditions” to produce the fluid 
velocity expression shown below. 
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The above velocity is integrated in the area between the surfaces to get the “volume flux, Q” for the “fluid 
flow”, which is provided below 
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and the ‘volume flux’ at the pressure's peak is: 
 
     1 1 2 1Q x U U h    (2.12) 

 

where the “film thickness”  at 1 1h x x   is considered to be 2
1 1h 1 x  . 

 
2.3. Reynolds equation 
 
 The above boundary conditions can be used to solve Eq.(2.2) and obtain the pressure Reynolds 
equation as presented below. 
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2.4. Scheme for non-dimensionalization 
 
 The following non-dimensional technique is utilised in this article. 
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Using the aforementioned dimensionless technique, the velocity and pressure equation are represented in a 
dimensionless form. 
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2.5. Heat equation 
 
 Assume the line contact lubrication problem with the following heat equation [3]: 
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The Eq.(2.3) is used to derive the shear stress for the Bingham plastic fluid. 
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The following describe the heat equation's boundary conditions. 
 
  at and atU LT T y h T T y h    . (2.17) 
 
The temperature of the lubricant is shown below as a result of integration of Eq.(2.16): 
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Thus, the explicit relationship between x and y and the temperature “T ” is known analytically. The mean film 

temperature is now provided by 
h

m

h

T Tdy


   and obtained as: 
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Now, the “temperature and mean temperature” in a dimensionless form are produced as shown below: 
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2.6. Load and traction [3] 
 
 One crucial factor is load capacity since it provides a precise assessment of the bearings efficiency. 
Integrate the pressure along the x-axis to calculate the normal load carrying capability 
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The normal load yW  in a dimensionless form is given by 
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The traction forces “ FT ” at both the surfaces can also be calculated by integrating the “shear stress” along the 
entire length. 
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The tractions in a non-dimensional form are: 
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3. Results and discussion  
 
 In this problem, numerical calculations are made using the following values: 
 

  / , , , , .4
1 0 U LU 400 cm s h 4 10 cm R 3 cm T 1 T 1 5      . 

 
3.1. Velocity profile 
 
 Figures (2-4) display the fluid's velocity for the regions prior to, following pressure peaks, and at the 
point of pressure peaks, respectively. The profiles in the first two graphs resemble parabolas with vertices 
pointing upward and downward in the areas prior to and after the point of pressure peak. As seen in Fig. (2), 

the vertices under the y  line indicate that there is a reverse flow at the inlet. Prasad and Subrahmanyam [11] 
demonstrated reverse flow. The back flow is eliminated as the fluid moves forward [7, 11-13]. However, the 
velocity profile, which can be seen in Fig. (4), appears to be increasing linearly at the point of maximum 
pressure [11].  
 

 
 

Fig.2. Velocity profile. 
 

 
 

Fig.3. Velocity profile. 
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Fig.4. Velocity at pressure peak point. 
 
3.2. Pressure profile 
 

 The dimensionless pressure p  is quantitatively estimated and shown in Figs. (5-7). Figures (5) and 

(6) show that in the Newtonian ( 0 0  ) and non-Newtonian ( 0 0  ) instances, respectively, p rises as rolling 

ratio U rises. It shows that, in comparison to pure rolling, hydrodynamic pressure is greater in the sliding 
scenario. These behaviours have been described in [2, 3, 11, 14, 15]. In addition, the lubricant pressure for 
distinct values of 0  is depicted in Fig. (7) for the sliding case. It is clear from this figure that non-Newtonian 
fluids experience greater pressure than Newtonian fluids. The points at pressure peaks for both Newtonian and 
non-Newtonian fluids are also shown in Tab.1. This table shows that as the rolling ratio rises, the points of 
maximum pressure move toward and away from the centre line of contact, for 0 1  and 0 0  , respectively. 
Revathi et al. [7] identify a similar kind of behaviour. 

 

 
 

Fig.5. Pressure with respect to Ū. 
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Fig.6. Pressure with respect to Ū. 
 

 
 

Fig.7. Pressure versus x . 
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3.3. Viscosity ( ) profile 
 

 For distinct values of 0 in the sliding case, the viscosity  is estimated numerically and presented in Fig 
(8). The figure shows that the viscosity for the non-Newtonian case is greater than that of the Newtonian case.  

 

 
 

Fig.8. Effect of viscosity against x . 
 
3.4. Mean temperature profile: 
 

 Figures 9-12 show the dimensionless mean temperature mT of the lubricant for various values of the 

rolling ratio U  and 0 .  
 

 
 

Fig.9. Effect of mean temperature against x . 
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Figure 9, which shows the dimensionless mean temperature for distinct values of U  for 0 0   (Newtonian 

case), demonstrates that the mean temperature coincides for various values of U . This shows that when a 
Newtonian fluid is taken into account, the effect of the rolling ratio is not substantial. Figure 10 shows the 

mean temperature for various values of U and for 0 1   (non-Newtonian case). This graph demonstrates that 

the mean temperature drops as U increases. Figure 11, which displays the mean temperature for various 0  

for sliding case (U =1.2), demonstrates how the mean temperature falls as 0  rises. The mean temperature is 

shown in Fig. 12 for various values of ep  (Pecklet number) and for a constant value of U =1.2. This graph 

demonstrates that the mean temperature rises with ep . 
 

 
 

Fig.10. Effect of mean temperature against x . 
 

 
 

Fig.11. Effect of mean temperature against x . 
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Fig.12. Effect of mean temperature against x . 
 
3.5 Load and traction 
 

 For various values of the rolling ratio U and yield stress parameter 0 , dimensionless load values in 
the y-direction are calculated and shown in Tab.2. The table also demonstrates that, in both Newtonian and 
non-Newtonian scenarios, load rises with the rolling ratio. These findings are fairly consistent with past 
research findings [11-13, 15]. Further, the non-Newtonian load is larger when compared with Newtonian load 

for any fixed values of the rolling ratio parameter U .  
 
Table 2. Load values. 
  

 

 yW  for 0 0    yW  for 0 1   

1.0 0.00150433 0.00154139 

1.1 0.00157920 0.00163845 

1.2 0.00165394 0.00173748 

1.3 0.00172856 0.00183885 

1.4 0.00180307 0.00194240 

1.5 0.00187746 0.00204851 

 
 Tables 3 and 4 show the computed traction forces at the lower and upper surfaces for various values 

of 0  and U . Both the Newtonian and non-Newtonian cases are shown for 0 0   and 0 1   respectively 

here. For a certain value of U , traction forces grow on the lower and higher surfaces with 0 . Table 3 also 

shows that traction forces rise with U , which suggests that traction forces will be higher on surfaces moving 
faster. These results closely resemble those found in Revathi et al. (2020) and Revathi et al. (2021). When 
running at the same speed, both rollers attain the same traction force. 
 
  

-7 -6 -5 -4 -3 -2 -1 0 1
0.75

0.8

0.85

0.9

0.95

1

Mean temperature for U2 / U1=1.2, =15, 0=1

dimensionless x

di
m

en
si

on
le

ss
 m

ea
n 

te
m

pe
ra

tu
re

 T
m

 

 

Pe=2

Pe=4
Pe=6

U



S. Lanka et al.  61 

Table 3. Traction values at lower surface. 
 

U  0 0   .0 0 5   0 1   

1.0 0.00322508 2.79322508 5.58322508 

1.1 0.00363444 2.79363444 5.58363444 

1.2 0.00404381 2.79404381 5.58404381 

1.3 0.00445319 2.79445319 5.58445319 

1.4 0.00486258 2.79486258 5.58486258 

1.5 0.00527198 2.79527198 5.58527198 

 
Table 4. Traction values at upper surface. 
 

U  0 0   .0 0 5   0 1   

1.0 0.00322508 2.79322508 5.58322508 

1.1 0.00313841 2.79313841 5.58313841 

1.2 0.00305175 2.79305175 5.58305175 

1.3 0.00296509 2.79296509 5.58296509 

1.4 0.00287845 2.79287845 5.58287845 

1.5 0.00279181 2.79279181 5.58279181 

 
4. Conclusion 
 
 An attempt is made to investigate the non-Newtonian incompressible Bingham plastic fluid film 
lubrication properties of the line contact problem for a lightly loaded rigid system. For various values of the 
yield stress and sliding parameters, the governing equations are solved for pressure, mean film temperature 
and velocity of the lubricant. The outcomes of this work can be used to support the following assertions: 

 The velocity of the lubricant is independent of 0 . 

 Lubricant velocity at point of pressure peak decreases linearly. 
 Pressure increases because of an increase in the rolling ratio. 
 The load increases as the rolling ratio rises. 
 The lower surface has greater traction than the upper surface due to its higher speed. 
 Traction forces on both surfaces increase as the yield stress parameter increases. 
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Nomenclature 
 
 pc  – specific heat 

 h  – film thickness  

 0h  – minimum film thickness 

 k  – thermal conductivity 

 p  – hydrodynamic pressure  

 R  – radius of the cylinder 

 hTF  – traction force  

 mT  – mean temperature 

 ,1 2U U  – velocities of the surfaces 

 u  – fluid velocity in x-direction  

 v – fluid velocity in y-direction  

 yW  – normal load 

 1x  – point of maximum pressure  

 2x  – point of cavitation   

 β – thermal coefficient 

 µ – viscosity 

 0  – viscosity coefficient 

   – shear stress 

 0  – yield stress 

   – density 
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