PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pulsed laser deposition of ZnO and MoO3 as reflection prohibitors on photovoltaic cell substrate to enhance the efficiency

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: With the ever-growing demand for conventional fuels, the improvement in the efficiency of the photovoltaic system is the need of the hour. Antireflection coatings enhance the availability of solar power by reducing the percentage of light reflected. A new coating has been developed to improve the solar cell's overall efficiency. This study focuses on enhancing the efficiency of the monocrystalline solar cell when a coating of ZnO-MoO3 is applied at a certain thickness. Design/methodology/approach: A layer of ZnO followed by MoO3 is deposited on a Silicon solar cell substrate using a Pulsed Laser Deposition process. Due to the transmissivity d between the two materials, they act as excellent antireflection coating. The layer thickness has been engineered to lie in the maximum absorption spectrum of monocrystalline silicon solar cells, which is between 400 and 800 nanometers. Findings: Based on the calculation of transmissivities for a given layer thickness of coating material, the coating has been done, and the efficiencies of the coated specimen were compared with the uncoated solar cell. The percentage improvement in the electrical efficiency of a single crystalline silicon solar cell with an anti-reflection coating at 1059 W/m2 is about 35.7%. Research limitations/implications: Among the available antireflection coating materials, the combination that provides better efficiency when coated on top of a solar cell is hard to find. Practical implications: This anti-reflection coating could be a better solution to enhance the overall efficiency of the single crystalline silicon solar cell. Originality/value: Although ZnO and MoO3 coatings have been investigated separately for improvement in solar cell efficiency with varying levels of success, the hybrid coating of ZnO/MoO3 with a performance enhancement of 35.7% is a great leap.
Rocznik
Strony
65--71
Opis fizyczny
Bibliogr. 19 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College Sivakasi, Tamilnadu, 626 005, India
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College Sivakasi, Tamilnadu, 626 005, India
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College Sivakasi, Tamilnadu, 626 005, India
Bibliografia
  • [1] H. Sai, Y. Sato, T. Oku, T. Matsui, Very thin crystalline silicon cells: A way to improve the photovoltaic performance at elevated temperatures, Progress in Photovoltaics 29/10 (2021) 1093-1104. DOI: https://doi.org/10.1002/pip.3443
  • [2] C.-T. Li, F. Hsieh, L. Wang, Performance improvement of p-type silicon solar cells with thin silicon films deposited by low pressure chemical vapor deposition method, Solar Energy 88 (2013) 104-109. DOI: https://doi.org/10.1016/j.solener.2012.12.001
  • [3] S. Leu, D. Sontag, Solar Cells: Optical and Recombination Losses, in: A. Shah (ed), Solar Cells and Modules, Springer Series in Materials Science, vol 301, Springer, Cham, 2020, 73-96. DOI: https://doi.org/10.1007/978-3-030-46487-5_4
  • [4] J.A. Luceño-Sánchez, A.M. Díez-Pascual, R. Peña Capilla, Materials for photovoltaics: State of art and recent developments, International Journal of Molecular Sciences 20/4 (2019) 976. DOI: https://doi.org/10.3390/ijms20040976
  • [5] N. Shanmugam, R. Pugazhendhi, R. Madurai Elavarasan, P. Kasiviswanathan, N. Das, Antireflective coating materials: a holistic review from PV perspective, Energies 13/10 (2020) 2631. DOI: https://doi.org/10.3390/en13102631
  • [6] M. Mihalev, C. Hardalov, C. Christov, M. Michailov, B. Ranguelov, H. Leiste, Structural and adhesional properties of thin MoO 3 films prepared by laser coating, Journal of Physics: Conference Series 514 (2014) 012022. DOI: https://doi.org/10.1088/1742-6596/514/1/012022
  • [7] B. Swatowska, T. Stapinski, K. Drabczyk, P. Panek, The role of antireflective coatings in silicon solar cel - the influence on their electrical parameters, Optica Applicata 41/2 (2011) 487-492.
  • [8] K. Ali, S.A. Khan, M.M. Jafri, Effect of double layer (SiO 2/TiO 2) anti-reflective coating on silicon solar cells, International Journal of Electrochemical Science 9 (2014) 7865-7874.
  • [9] E. Chanta, D. Wongratanaphisan, A. Gardchareon, S. Phadungdhitidhada, P. Ruankham, S. Choopun, Effect of ZnO double layer as anti-reflection coating layer in ZnO dye-sensitized solar cells, Energy Procedia 79 (2015) 879-884. DOI: https://doi.org/10.1016/j.egypro.2015.11.581
  • [10] Y.F. Makableh, M. Al-Fandi, M. Khasawneh, C.J. Tavares, Comprehensive design analysis of ZnO antireflection nanostructures for Si solar cells, Superlattices and Microstructures 124 (2018) 1-9. DOI: https://doi.org/10.1016/j.spmi.2018.10.003
  • [11] A. Suhandi, Y.R. Tayubi, F.C. Wibowo, P. Arifin, Reducing The Light Reflected by Silicon Surface Using ZnO/TS Antireflection Coating, Journal of Physics: Conference Series 877 (2017) 012068. DOI: https://doi.org/10.1088/1742-6596/877/1/012068
  • [12] L. Markov, A. Pavluchenko, I. Smirnova, ZnO-Based Antireflection Layers Obtained by Electron-Beam Evaporation, Semiconductors 56 (2022) 85-90. DOI: https://doi.org/10.1134/S1063782622010110
  • [13] M. Wang, H. He, C. Shou, H. Cui, D. Yang, L. Wang, Anti-reflection effect of large-area ZnO nano-needle array on multi-crystalline silicon solar cells, Materials Science in Semiconductor Processing 138 (2022) 106299. DOI: https://doi.org/10.1016/j.mssp.2021.106299
  • [14] L.S. Pali, J.K. Tiwari, N. Ali, S. Ghosh, K.S. Nalwa, A. Garg, Development of MoO3/Au/MoO 3 top transparent conducting electrode for organic solar cells on opaque substrates, Energy Technology 10/2 (2022) 2100689. DOI: https://doi.org/10.1002/ente.202100689
  • [15] C.-Y. Chen, S. Kholimatussadiah, W.-C. Chen, Y.-R. Lin, J.-W. Lin, P.-T. Chen, R.-S. Chen, K.-H. Chen, L.-C. Chen, Back Contact Engineering to Improve CZTSSe Solar Cell Performance by Inserting MoO3 Sacrificial Nanolayers, Sustainability 14/15 (2022) 9511. DOI: https://doi.org/10.3390/su14159511
  • [16] D.J. Lee, G.M. Kumar, Y. Kim, W. Yang, D.Y. Kim, T.W. Kang, P. Ilanchezhiyan, Hybrid CsPbBr3 quantum dots decorated two dimensional MoO3 nanosheets photodetectors with enhanced performance, Journal of Materials Research and Technology 18 (2022) 4946-4955. DOI: https://doi.org/10.1016/j.jmrt.2022.04.156
  • [17] F. Dovland, Investigation of Pulsed Laser Deposition Growth Parameters and their influence on the sheet resistance of a Complex Oxide Heterointerface, MSc Thesis, Institutt for Elektronikk og Telekommunikasjon, 2011.
  • [18] S.P. Sukhatme, J. Nayak, Solar energy, McGraw-Hill, India, 2017.
  • [19] R. Couderc, M. Amara, J. Degoulange, F. Madon, R. Einhaus, Encapsulant for glass-glass PV modules for minimum optical losses: gas or EVA?, Energy Procedia 124 (2017) 470-477. DOI: https://doi.org/10.1016/j.egypro.2017.09.283
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b29f19ff-5497-4b9d-972f-653055079acd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.