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Abstract: This paper is devoted to a sufficient second-order con-
dition for a weak local minimum in a simple optimal control problem
with one control constraint G(u) ≤ 0, given by a C2-function. A si-
milar second-order condition was obtained earlier by the author for
a strong minimum in a much more general problem. In the present
paper, we would like to take a narrower perspective than before and
thus provide shorter and simpler proofs. In addition, the paper uses
the first and second order tangents to the set U , defined by the in-
equality G(u) ≤ 0. The main difficulty of the proof, clearly shown
in the paper, refers to the set, where the gradient Hu of the Hamil-
tonian is small, but the condition of quadratic growth of the Hamil-
tonian is satisfied. The paper can be valuable for self-explanation
and provides a basis for extensions.
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tangents, second order optimality condition, weak local minimum,
inequality control constraint, Pontryagin’s maximum principle

1. Introduction

In this paper, we discuss sufficient second-order conditions for a weak local
minimum in the following optimal control problem on the interval [0, 1]:

min J(x, u) := F (x(0), x(1)), (1)

ẋ(t) = f(x(t), u(t)) for a.a. t ∈ [0, 1], (2)
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G(u(t)) ≤ 0 for a.a. t ∈ [0, 1], (3)

where F : R2n → R, f : Rn+m → R
n, and G : Rm → R are of class C2, u ∈ L∞,

x ∈ W 1,1.

There is an extensive literature on sufficient second-order conditions in op-
timal control, see, for example, Bonnans and Hermant (2009), Bonnans and
Osmolovskii (2010, 2012), Bonnans and Shapiro (2000), Levitin, Milyutin and
Osmolovskii (1978), Malanowski (1994, 2001), Maurer (1981), Maurer and Pick-
enhain (1981), Milyutin and Osmolovskii (1998), Osmolovskii (2011, 2012), Os-
molovskii and Maurer (2012), Zeidan (1984) and further literature cited in these
papers. We do not mention here the works related to second-order conditions
for singular arcs.

The most general results on sufficient conditions of the second order in opti-
mal control were published by the author in Osmolovskii (2011). The conditions,
contained in Osmolovskii (2011) took into account possible jumps of the opti-
mal control at a finite number of points. Their proofs are long and difficult. To
make the proofs more accessible, the author published in Osmolovskii (2012) a
simplified version of these results, in which the assumptions did not allow jumps
of the optimal control. Namely, in addition to the C2-smoothness of the data,
the following assumption was introduced: a.e. in [t0, t1]

H(x̂(t), u, p̂(t))−H(x̂(t), û(t), p̂(t)) ≥ c|u− û(t)|2 ∀u ∈ U (4)

with some c > 0. Here, H = pf is the Hamiltonian of the problem, (x̂, û) is the
admissible state-control pair, examined for optimality, p̂ is the adjoint variable,
U ⊂ R

m is the control constraint. The set U in Osmolovskii (2012) was defined
as:

U = {u ∈ R
m : Gi(u) ≤ 0, i = 1, . . . , k},

where Gi : Rm → R are C2-mappings, such that at every point u ∈ U the
gradients g′i(u), i ∈ IG(u) are linearly independent, where IG(u) = {i : Gi(u) ≤
0} is the set of active indices.

Condition (4) obviously strengthens Pontryagin’s minimum principle (we
prefer to use the notion of minimum principle rather than that of the maximum
principle), and we call it the quadratic growth condition for the Hamiltonian. It
was shown in Bonans and Osmolovskii (2012) that together with the assump-
tion of C2-smoothness of the data this condition guarantees the continuity of
the control û. Note that in Osmolovskii (2011) we used a much finer growth
condition for H, allowing jumps of û. In this paper, the condition (4) is assumed
to hold only on a set of small measure, so the control û can only be measurable.
This set of a small measure has the form

m(ε) := {t ∈ [0, 1] : 0 < |Hu(x̂(t), û(t), p̂(t))| < ε}, (5)

where ε > 0 is arbitrarily small. The main difficulties of the proof are connected
with this set. The proof uses the ideas of the paper Osmolovskii (2012), but
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compared to the proof contained in that paper, it is much simpler and clearer,
mainly due to the simplicity of the problem, but also due to the use of some
new tricks.

The paper is organized as follows. In Section 2, the assumptions for the
problem (1)-(3) are given, the first-order necessary optimality condition for a
weak local minimum in this problem is recalled, the critical cone K and the
quadratic form Ω are defined, a condition (using a second-order adjacent set to
U), equivalent to the positive definiteness of Ω on K is proven, and finally, the
main result of the paper is formulated: a second-order sufficient condition for
the so-called quadratic growth of the cost, which implies a weak local minimum
at the given point. The main result is stated in Theorem 2.1. Section 3 is
entirely devoted to the proof of this theorem.

2. Main result

Let us formulate the assumptions for the problem (1)-(3).

Assumption 2.1 We assume that G′(u) 6= 0 at all points u ∈ R
m such that

G(u) = 0 (regularity assumption).

In the sequel we use the notation

q = (x(0), x(1)) = (x0, x1), w = (x, u), W = W 1,1 × L∞.

The norm of an element w = (x, u) ∈ W is defind as

‖w‖ = ‖x‖1,1 + ‖u‖∞.

The local minimum in this norm is a weak local minimum.

We say that a pair w = (x, u) ∈ W is admissible, if equation (2) and inequal-
ity (3) hold. Let ŵ = (x̂, û) be an addmissible pair. Set q̂ = (x̂(0), x̂(1)).

Assumption 2.2 The first order necessary optimality condition for a weak local
minimum for the pair ŵ = (x̂, û) is fulfilled: there exist p̂ ∈ W 1,1 and λ̂ ∈ L∞,
such that

(−p̂(0), p̂(1)) = F ′(q̂), (6)

− ˙̂p(t) = p̂(t) fx(ŵ(t)) for a.a. t ∈ [0, 1], (7)

p̂(t) fu(ŵ(t)) + λ̂(t)G′(û(t)) = 0 for a.a. t ∈ [0, 1], (8)

λ̂(t) ≥ 0 for a.a. t ∈ [0, 1], (9)

λ̂(t)G(û(t)) = 0 for a.a. t ∈ [0, 1]. (10)
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Note that for a given ŵ, the pair (p̂, λ̂) is uniquely determined by these
conditions.

Now, we introduce the Hamiltonian and the augmented Hamiltonian

H(w, p) = p f(w), H̄(w, p, λ) = p f(w) + λG(u).

Then, equations (7) and (8) take the forms

− ˙̂p(t) = Hx(ŵ(t), p̂(t)), H̄u(ŵ(t), p̂(t), λ̂(t)) = 0.

Let us now formulate sufficient conditions of the second order for a weak
local minimum. Define the critical cone K. Set

M0 = {t ∈ [0, 1] : G(û(t)) = 0},

K =
{

w ∈ W : ẋ(t) = f ′(ŵ(t))w(t), Hu(ŵ(t), p̂(t))u(t) = 0

for a.a. t ∈ [0, 1];G′(û(t))u(t) ≤ 0 for a.a. t ∈ M0

}

. (11)

Note that the condition

G′(û(t))u(t) ≤ 0 for a.a. t ∈ M0,

which appears in the definition of the critical cone, can be presented as

u(t) ∈ T ♭
U (û(t)) for a.a. t ∈ [0, 1],

where T ♭
U (û(t)) is the first-order tangent to the set

U = {u ∈ R
m : G(u) ≤ 0}

at the point û(t), see, for instance, Aubin and Frankowska (1990).

It is easy to see that K can be defined in the following equivalent way

K =
{

w ∈ W : F ′(q̂)q ≤ 0, ẋ(t) = f ′(ŵ(t))w(t) a.e. on [0, 1],

G′(û(t))u(t) ≤ 0 a.e. on M0

}

(this corresponds to the classical definition of a critical cone) and, moreover,
F ′(q̂)q = 0 for any element w ∈ K. But we will not use here these facts.

Let us show that the condition K = {0} is not sufficient for local minimality
of ŵ. We will show this for a problem of a different type.
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Example 2.1 Let m = 1. Consider the problem

minimize J(u) :=

∫ 1

0

tu− u2 dt, u ≥ 0.

Set û = 0. Then, λ̂(t) = t, K = {0}. But û is not a weak local minimizer,
because there is a sequence

un(t) =







1√
n

0 ≤ t ≤ 1
n

0, 1
n
< t ≤ 1,

such that J(un) < 0 for all n = 1, 2, . . ..

Assumption 2.3 There exist C > 0 and ε > 0 such that for a.a. t ∈ m(ε) (see
(5)) we have

H(x̂(t), u, p̂(t))−H(x̂(t), û(t), p̂(t)) ≥ C|u− û(t)|2

whenever |u− û(t)| < ε, G(u) ≤ 0. (12)

Note that this assumption does not hold in Example 2.1.

Let us introduce the quadratic form:

Ω(w) := 〈F ′′(q̂)q, q〉+
∫ 1

0

〈H̄ww(ŵ(t), p̂(t), λ̂(t))w(t), w(t)〉 dt, (13)

where q = (x(0), x(1)).

Assumption 2.4 There exists c0 > 0 such that

Ω(w) ≥ c0
(

|x(0)|2 + ‖u‖22
)

∀w ∈ K. (14)

Proposition 2.1 Assumption 2.4 is equivalent to the following one: there ex-
ists c0 > 0 such that

Ω(w) ≥ c0
(

‖x‖2∞ + ‖u‖22
)

∀w ∈ K. (15)

Proof Indeed, if w ∈ K, then

x(t) = x(0) +

∫ t

0

(

fx(ŵ(τ))x(τ) + fu(ŵ(τ))u(τ)
)

dτ,

whence
‖x‖1,1 ≤ c

(

|x(0)|+ ‖u‖1
)

with some c > 0. The required equivalence follows. ✷

Here is another equivalent form of this assumption, which will be used in
further course of considerations.
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Proposition 2.2 Assumption 2.4 is equivalent to the following one: there ex-
ists c0 > 0 such that

ω(w) +

∫ 1

0

Hu(ŵ(t), p̂(t))v(t) dt ≥ c0
(

‖x‖2∞ + ‖u‖22
)

(16)

for all w = (x, u) ∈ K and for all v ∈ L∞ such that v(t) ∈ T
♭(2)
U (û(t), u(t)) a.e.

on M0, where

ω(w) =
1

2
〈F ′′(p̂)q, q〉+ 1

2

∫ 1

0

〈Hww(ŵ(t), p̂(t))w(t), w(t)〉 dt,

and

T
♭(2)
U (û, u) =

{

v ∈ R
m : G′(û)v +

1

2
〈G′′(û)u, u〉 ≤ 0

}

is the second-order tangent to the set U for the pair (û, u) ∈ R
2m, see, for

instance, Aubin and Frankowska (1990) and Cominetti (1990).

Proof Indeed, if w = (x, u) ∈ K, v ∈ L∞, v(t) ∈ T
♭(2)
U (û(t), u(t)) a.e. on

M0, then

Hu(ŵ(t), p̂(t))v(t) = −λ̂(t)G′(û(t))v(t) ≥ 1

2
λ̂(t)〈G′′(û(t))u(t), u(t)〉

a.e. on [0, 1],

and therefore

ω(w) +

∫ 1

0

Hu(ŵ(t), p̂(t))v(t) dt ≥ Ω(w).

Hence, condition (15) implies condition (16).

Moreover, due to Assumption 2.1, for any w = (x, u) ∈ K there exists
v ∈ L∞ such that

G′(û(t))v(t) +
1

2
〈G′′(û(t))u(t), u(t)〉 = 0 a.e. on M0.

Hence v(t) ∈ T
♭(2)
U (û(t), u(t)) a.e. on M0 and

Hu(ŵ(t), p̂(t))v(t) = −λ̂(t)G′(û(t))v(t) =
1

2
λ̂(t)〈G′′(û(t))u(t), u(t)〉

a.e. on [0, 1].

Consequently,

ω(w) +

∫ 1

0

Hu(ŵ(t), p̂(t))v(t) dt = Ω(w).

Therefore, conditions (16) and (15) are equivalent. ✷

The following theorem holds.
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Theorem 2.1 (sufficient second order condition) Let Assumptions 2.1-
2.4 be fulfilled. Then there exist δ > 0 and c > 0 such that

J(w)− J(ŵ) ≥ c
(

‖x− x̂‖2∞ + ‖u− û‖22
)

(17)

for all admissible w = (x, u) ∈ W such that ‖w − ŵ‖∞ < δ.

We conclude this section with a brief note on the numerical verification of
the estimates (14) or (15) for the quadratic form Ω on the critical cone K.
The ”standard” method is to show that the associated matrix Riccati equation
has a bounded solution; see, e.g., Malanowski (2001), Malanowski and Maurer
(1996), Maurer and Pickenhain 1981), and the author’s book with H. Maurer,
i.e. Osmolovskii and Maurer (2012).

3. Proof of the main result

Here we give the proof of Theorem 2.1. In what follows, we omit the dependence
on t for x, u, x̂, û, etc.

Step 1◦

For w = (x, u) ∈ W we set

∆w = w − ŵ, γ(∆w) = ‖∆x‖2∞ + ‖∆u‖22.
Assume that condition (17) does not hold. Then, there is a sequence of admis-
sible points wn 6= ŵ such that ‖wn − ŵ‖∞ → 0 and

∆nJ := J(wn)− J(ŵ) ≤ o(γn), (18)

where
γn = γ(∆wn) > 0, ∆wn = (∆xn,∆un) = wn − ŵ.

Set ∆nf = f(wn)− f(ŵ). Since ∆ẋn = ∆nf , we get

∆nJ = ∆nJ +

∫ 1

0

p̂(∆nf −∆ẋn) dt.

Further,
∫ 1

0

p̂∆ẋn dt = p̂∆xn |10 −
∫ 1

0

˙̂p∆xn dt = F ′(p̂)∆qn +

∫ 1

0

p̂fx(ŵ)∆xn dt.

Therefore,

∆nJ = ∆nF − F ′(p̂)∆qn +

∫ 1

0

(

p̂∆nf − p̂fx(ŵ)∆xn

)

dt

= ∆nF − F ′(p̂)∆qn +

∫ 1

0

(

∆nH −Hx(ŵ, p̂)∆xn

)

dt, (19)

where ∆nH = H(wn, p̂)−H(ŵ, p̂).
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Step 2◦

We have

∆nH := H(x̂+∆xn, û+∆un, p̂)−H(x̂, û, p̂)

= H(x̂+∆xn, û+∆un, p̂)−H(x̂, û+∆un, p̂) +H(x̂, û+∆un, p̂)−H(x̂, û, p̂)

= Hx(x̂, û+∆un, p̂)∆xn +∆unH + rn,

where

∆unH := H(x̂, û+∆un, p̂)−H(x̂, û, p̂), ‖rn‖∞ = O(γn).

Let εn → 0+. Set

m(εn) = {t ∈ [0, 1] : 0 < |Hu(x̂, û, p̂)| < εn}.

Clearly, m(εn) ⊂ M0 and measm(εn) → 0 as n → ∞. Since G(un) ≤ 0 for all
n, then, due to Assumption 2.3, we have ∆unH ≥ C|∆un|2 for all sufficiently
large n. Therefore,

∫

m(εn)

∆unH dt ≥ C

∫

m(εn)

|∆un|2 dt.

Consequently,
∫

m(εn)

(

∆nH −Hx(x̂, û, p̂)∆xn

)

dt

≥
∫

m(εn)

(

Hx(x̂, û+∆un, p̂)−Hx(x̂, û, p̂)
)

∆xn dt+C

∫

m(εn)

|∆un|2 dt+ o(γn).

Since

∫

m(εn)

|∆un| · |∆xn| dt ≤ ‖∆xn‖∞
√

measm(εn)‖∆un‖2 = o(γn),

we get
∫

m(εn)

(

Hx(x̂, û+∆un, p̂)−Hx(x̂, û, p̂)
)

∆xn dt = o(γn).

Therefore,

∫

m(εn)

(

∆nH −Hx(x̂, û, p̂)∆xn

)

dt ≥ C

∫

m(εn)

|∆un|2 dt+ o(γn). (20)
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Step 3◦

Conditions (18)-(20) imply

o(γn) ≥ ∆nF − F ′(p̂)∆qn +

∫ 1

0

(

∆nH −Hx(ŵ, p̂)∆xn

)

dt

≥ 1

2
〈F ′′(p̂)∆qn,∆qn〉+ o(|∆qn|2) +

∫

[0,1]\m(εn)

(

∆nH −Hx(ŵ, p̂)∆xn

)

dt

+C

∫

m(εn)

|∆un|2 dt+ o′(γn). (21)

We set

u′
n = ∆unχm(εn), ∆u0

n = ∆un − u′
n, ∆w0

n = (∆xn,∆u0
n),

γ0
n = γ(∆w0

n), γ′
n =

∫ 1

0

|u′
n| dt =

∫

m(εn)

|∆un|2 dt.

Then

γn = γ0
n + γ′

n.

Further, set

∆0
nH := H(ŵ +∆w0

n, p̂)−H(ŵ, p̂).

Then
∫

[0,1]\m(εn)

(

∆nH −Hx(ŵ, p̂)∆xn

)

dt =

∫

[0,1]\m(εn)

(

∆0
nH −Hx(ŵ, p̂)∆xn

)

dt

=

∫ 1

0

(

∆0
nH −Hx(ŵ, p̂)∆xn

)

dt−
∫

m(εn)

(

∆0
nH −Hx(ŵ, p̂)∆xn

)

dt.

Obviously, we have

∫

m(εn)

(

∆0
nH −Hx(ŵ, p̂)∆xn

)

dt

=

∫

m(εn)

(

H(x̂+∆xn, û, p̂)−H(x̂, û, p̂)−Hx(ŵ, p̂)∆xn

)

dt = o(γn).

Thus, we get

∫

[0,1]\m(εn)

(

∆nH−Hx(ŵ, p̂)∆xn

)

dt =

∫ 1

0

(

∆0
nH−Hx(ŵ, p̂)∆xn

)

dt+o(γn).

(22)
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Now, note that Hw(ŵ, p̂)∆w0
n = Hx(ŵ, p̂)∆xn +Hu(ŵ, p̂)∆u0

n. Therefore, rela-
tions (21) and (22) imply

o(γn) ≥
1

2
〈F ′′(p̂)∆qn,∆qn〉+

∫ 1

0

(

∆0
nH −Hx(ŵ, p̂)∆xn

)

dt+ Cγ′
n

=
1

2
〈F ′′(p̂)∆qn,∆qn〉+

∫ 1

0

(

∆0
nH−Hw(ŵ, p̂)∆w0

n

)

dt+

∫ 1

0

Hu(ŵ, p̂)∆u0
n dt+Cγ′

n.

Since

∆0
nH −Hw(ŵ, p̂)∆w0

n =
1

2
〈Hww(ŵ, p̂)∆w0

n,∆w0
n〉+ o(|∆w0

n|2)

(here and below, all estimates are satisfied uniformly on [0, 1]), we obtain from
here that

o(γn) ≥
1

2
〈F ′′(p̂)∆qn,∆qn〉+

∫ 1

0

〈Hww(ŵ, p̂)∆w0
n,∆w0

n〉 dt+
∫ 1

0

Hu(ŵ, p̂)∆u0
n dt+ Cγ′

n,

or, equivalently,

ω(∆w0
n) +

∫ 1

0

Hu(ŵ, p̂)∆u0
n dt+ Cγ′

n ≤ o(γn). (23)

We will analyze this condition.

Step 4◦

Since ω(∆w0
n) ≤ O(γ0

n) ≤ O(γn), relation (23) implies

∫ 1

0

Hu(ŵ, p̂)∆u0
n dt ≤ O(γn). (24)

Further, condition G(û+∆u0
n) ≤ 0 yields ∆0

unH ≥ C|∆un|2, and then

Hu(ŵ, p̂)∆u0
n ≥ O(|∆u0

n|2) a.e. on M0.

It follows that

(Hu(ŵ, p̂)∆u0
n)

− ≤ O(|∆u0
n|2) a.e. on M0, (25)

where a+ = max{a, 0}, a− = max{−a, 0}, a = a+ − a− for a ∈ R.

We analyse conditions (24) and (25). Let us represent condition (24) in the
form

∫ 1

0

(Hu(ŵ, p̂)∆u0
n)

+ dt−
∫ 1

0

(Hu(ŵ, p̂)∆u0
n)

− dt ≤ O(γn).
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Since, in view of (25),

∫ 1

0

(Hu(ŵ, p̂)∆u0
n)

− dt ≤ O(γn),

we obtain
∫ 1

0

(Hu(ŵ, p̂)∆u0
n)

+ dt ≤ O(γn).

Consequently,

∫ 1

0

|Hu(ŵ, p̂)∆u0
n| dt ≤ O(γn). (26)

Step 5◦

Condition G(û+∆u0
n) ≤ 0 implies

G′(û)∆u0
n +

1

2
〈G′′(û)∆u0

n,∆u0
n〉 ≤ o(|∆u0

n|2) a.e. on M0. (27)

By multiplying this inequality by λ̂ ≥ 0 and by taking into account that
λ̂G′(û) = −Hu(ŵ, p̂), we get

−Hu(ŵ, p̂)∆u0
n +

1

2
λ̂〈G′′(û)∆u0

n,∆u0
n〉 ≤ o(|∆u0

n|2) a.e. on M0, (28)

whence

−
∫ 1

0

Hu(ŵ, p̂)∆u0
n dt+

∫ 1

0

1

2
λ̂〈G′′(û)∆u0

n,∆u0
n〉 dt ≤ o(γn).

Upon adding this inequality to (23) and using that H̄(w, p, λ) = p f(w)+λG(u),
we obtain

Ω(∆w0
n) + Cγ′

n ≤ o(γn). (29)

We consider two possible cases:

(i) lim inf
γ0
n

γn
= 0, (ii) lim inf

γ0
n

γn
> 0,

where γn > 0 for all n.
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Case (i).

Step 6◦

In this case, there is a subsequence such that γ0
n/γn → 0 on this subsequence.

Assume that this condition holds for the sequence itself. Then, γ0
n = o(γn).

Since, obviously, |Ω(∆w0
n)| ≤ O(γ0

n), condition (29) yields

Cγ′
n ≤ o(γn) +O(γ0

n) = o1(γn),

i.e., γ′
n = o(γn). The latter contradicts the conditions γ

0
n = o(γn) and γ0

n+γ′
n =

γn > 0.

Case (ii).

Step 7◦

This is the main case, where we have γn = O(γ0
n). Let us represent (23) in the

form
γ0
n

γn
· ω(∆w0

n) +
∫ 1

0
Hu(ŵ, p̂)∆u0

n dt

γ0
n

+
γ′
n

γn
· C ≤ o(1).

It follows that

min

{

ω(∆w0
n) +

∫ 1

0
Hu(ŵ, p̂)∆u0

n dt

γ0
n

, C

}

≤ o(1).

Since C > 0, we get

ω(∆w0
n) +

∫ 1

0
Hu(ŵ, p̂)∆u0

n dt

γ0
n

≤ o(1),

or, equivalently,

ω(∆w0
n) +

∫ 1

0

Hu(ŵ, p̂)∆u0
n dt ≤ o(γ0

n). (30)

Next, we analyze this condition using Assumption 2.4 in the form (16). In
general, ∆w0

n does not belong to the critical cone K, defined by (2). We find
a sequence δwn ∈ K, which is ”close” in some sense to the sequence ∆w0

n, and
then use condition (30).

Step 8◦

Set
M+(Hu) := {t ∈ [0, 1] : |Hu(x̂, û, p̂)| > 0},
M+(Hu, εn) := {t ∈ [0, 1] : |Hu(x̂, û, p̂)| ≥ εn},
M0(Hu) := {t ∈ M0 : Hu(x̂, û, p̂) = 0}.
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Then

M0 = M0(Hu) ∪M+(Hu) = M0(Hu) ∪m(εn) ∪M+(Hu, εn). (31)

In view of condition (27), there exists ũ1n such that

ũ1nχM0(Hu) = ũ1n, G′(û)
(

∆u0
n + ũ1n

)

χM0(Hu) ≤ 0, (32)

|ũ1n| ≤ O(|∆u0
n|2) (33)

(hereinafter χM stands for the characteristic function of the set M), and there-
fore,

‖ũ1n‖1 ≤ O(γn), ‖ũ1n‖∞ ≤ O(‖∆un‖2∞) = o(1). (34)

Further, we set

H0
u(ŵ, p̂) =

Hu(ŵ, p̂)

|Hu(ŵ, p̂)|
, t ∈ M+(Hu).

There exists ũ2n such that

ũ2nχM+(Hu,εn) = ũ2n, Hu(ŵ, p̂)
(

∆u0
n + ũ2n

)

χM+(Hu,εn) = 0, (35)

|ũ2n| ≤ O(|H0
u(ŵ, p̂)∆u0

n)|)χM+(Hu,εn) ≤
1

εn
O(|Hu(ŵ, p̂)∆u0

n)|)χM+(Hu,εn).

(36)

Consequently,
‖ũ2n‖∞ ≤ O(‖∆un‖∞) = o(1).

Taking into account the estimate (26), we obtain

‖ũ2n‖1 ≤ 1

εn
O(γn). (37)

Choose εn > 0 such that

‖∆wn‖∞
εn

→ 0. (38)

Then
1

εn
O(γn) = o(

√
γn).

Consequently,

‖ũ2n‖1 = o(
√
γn). (39)

Set ũn = ũ1n + ũ2n. Then, ‖ũn‖∞ ≤ O(‖∆un‖∞) = o(1) and

‖ũn‖1 = o(
√
γn), ‖ũn‖22 ≤ ‖ũn‖∞‖ũn‖1 ≤ ‖ũn‖∞

εn
O(γn) = o(γn). (40)
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Moreover, due to (31), (32), (35), we have

G′(û)
(

∆u0
n + ũn

)

≤ 0 a.e. on M0, (41)

Hu(ŵ, p̂)
(

∆u0
n + ũn

)

= 0. (42)

Set
ūn = −u′

n + ũn, δun = ∆un + ūn = ∆u0
n + ũn.

Then

G′(û)δun ≤ 0 a.e. on M0, Hu(ŵ, p̂)δun = 0. (43)

Also note that

‖u′
n‖1 ≤

√

measm(εn)‖u′
n‖2 = o(‖u′

n‖2) = o(
√

γ′
n) = o(

√
γn).

Therefore,

‖ūn‖1 = o(
√
γn). (44)

Step 9◦

The equation ∆ẋn = ∆nf implies

∆ẋn = fx(ŵ)∆xn + fu(ŵ)∆un +O(|∆wn|2). (45)

There exists δxn ∈ W 1,1 such that

δẋn = fx(ŵ)δxn + fu(ŵ)δun, δxn(0) = ∆xn(0). (46)

Then, it follows from equations (45) and (46) that

δxn = ∆xn + x̄n,

where x̄n satisfies

˙̄xn = fx(ŵ)x̄n + fu(ŵ)ūn −O(|∆wn|2), x̄n(0) = 0.

This implies the following estimate

‖x̄n‖∞ ≤ O(‖ūn‖1) +O(‖∆wn‖22) = o(
√
γn). (47)

Set
w̄n = (x̄n, ũn), δwn = (δxn, δun) := ∆w0

n + w̄n.

Then, according to (43) and (46), we see that

δwn ∈ K. (48)
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Step 10◦

Let us compare ω(δwn) with ω(∆w0
n). We have

〈Hww(ŵ, p̂)δwn, δwn〉 = 〈Hww(ŵ, p̂)(∆w0
n + w̄n),∆w0

n + w̄n〉

= 〈Hww(ŵ, p̂)∆w0
n,∆w0

n〉+ 2〈Hww(ŵ, p̂)∆w0
n, w̄n〉+ 〈Hww(ŵ, p̂)w̄n, w̄n〉.

Similarly,
〈F ′′(q̂)δqn, δqn〉 = 〈F ′′(q̂)(∆qn + q̄n),∆qn + q̄n〉

= 〈F ′′(q̂)∆qn,∆qn〉+ 2〈F ′′(q̂)∆qn, q̄n〉+ 〈F ′′(q̂)q̄n, q̄n〉,
where

δqn = (δxn(0), δxn(1)), ∆qn = (∆xn(0),∆xn(1)), q̄n = (x̄n(0), x̄n(1)).

Therefore,
ω(δwn) = ω(∆w0

n) + rω(n),

where
rω(n) = 2〈F ′′(q̂)∆qn, q̄n〉+ 〈F ′′(q̂)q̄n, q̄n〉

+

∫ 1

0

(

2〈Hww(ŵ, p̂)∆w0
n, w̄n〉+ 〈Hww(ŵ, p̂)w̄n, w̄n〉

)

dt.

We show that

|rω(n)| = o(γn). (49)

First, we have

〈Hww(ŵ, p̂)∆w0
n, w̄n〉 =

= 〈Hxx(ŵ, p̂)∆xn, x̄n〉+ 〈Hxu(ŵ, p̂)∆u0
n, x̄n〉+

〈Hux(ŵ, p̂)∆xn, ũn〉+ 〈Huu(ŵ, p̂)∆u0
n, ũn〉.

According to (47) and the first estimate in (40) we get

‖∆xn‖∞‖x̄n‖∞ + ‖∆un‖1‖x̄n‖∞ + ‖∆xn‖∞‖ũn‖1 = o(γn).

Let us estimate ‖|∆u0
n| · |ũn|‖1. Using the first estimate in (34), estimate (37)

and condition (38), we get

∫ 1

0

|∆u0
n|·|ũn| dt =

∫ 1

0

|∆u0
n|·|ũ1n+ũ2n| dt ≤ ‖∆u0

n‖∞‖ũ1n‖1+‖∆u0
n‖∞‖ũ2n‖1

≤ ‖∆u0
n‖∞O(γn) + ‖∆u0

n‖∞
1

εn
O(γn) = o(γn). (50)

Therefore,
‖〈Hww(ŵ, p̂)∆w0

n, w̄n〉‖1 = o(γn).
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Secondly, we have

〈Hww(ŵ, p̂)w̄n, w̄n〉 = 〈Hxx(ŵ, p̂)x̄n, x̄n〉+〈2Hxu(ŵ, p̂)ũn, x̄n〉+〈Huu(ŵ, p̂)ũn, ũn〉.
Again using (47) and (40) we get

‖x̄n‖2∞ + ‖x̄n‖∞‖ũn‖1 + ‖ũn‖22 = o(γn),

and therefore,
‖〈Hww(ŵ, p̂)w̄n, w̄n〉‖1 = o(γn).

Consequently,
∣

∣

∣

∣

∫ 1

0

(

2〈Hww(ŵ, p̂)∆w0
n, w̄n〉+ 〈Hww(ŵ, p̂)w̄n, w̄n〉

)

dt

∣

∣

∣

∣

= o(γn).

In addition,

|〈2F ′′(q̂)∆qn, q̄n〉+ 〈F ′′(q̂)q̄n, q̄n〉| ≤ c
(

‖∆xn‖∞‖x̄n‖∞ + ‖x̄n‖2∞
)

= o(γn)

with some c > 0. This yields the estimate (49). Consequently,

ω(δwn) = ω(∆w0
n) + o(γn). (51)

Step 11◦

Now let us compare γ(δwn) with γn = γ(∆wn). We have

|δxn|2 = |∆xn + x̄n|2 = |∆xn|2 + 2〈∆xn, x̄n〉+ |x̄n|2.
Therefore,

‖δxn‖2∞ = ‖∆xn‖2∞ + rx(n),

where

|rx(n)| ≤ ‖∆xn‖∞‖x̄n‖∞ + ‖x̄n‖2∞ = o(γn). (52)

Similarly,

|δun|2 = |∆u0
n + ũn|2 = |∆u0

n|2 + 2〈∆u0
n, ũn〉+ |ũn|2.

Therefore,
‖δun‖22 = ‖∆u0

n‖22 + ru(n),

where

ru(n) = 2

∫ 1

0

〈∆u0
n, ūn〉 dt+ ‖ūn‖22,

and then

|ru(n)| ≤ ‖|∆u0
n| · |ũn|‖1 + ‖ũn‖22 = o(γn). (53)

Set r(n) = rx(n) + ru(n). Then, in view of (52) and (53),

|r(n)| = o(γn). (54)

Consequently,

γ(δwn) = γn + o(γn). (55)



Second-order sufficient condition for weak local minimum in optimal control 167

Step 12◦

Finally, consider the term
∫ 1

0
Hu(ŵ, p̂)∆u0

n dt in the inequality (30). Let us use
(27). Since

〈G′′(û)δun, δun〉 = 〈G′′(û)(∆u0
n + ũn),∆u0

n + ũn〉
= 〈G′′(û)∆u0

n,∆u0
n〉+ 2〈G′′(û)∆u0

n, ũn〉+ 〈G′′(û)ũn, ũn〉
= 〈G′′(û)∆u0

n,∆u0
n〉+ rG(n),

where

rG(n) = 2〈G′′(û)∆u0
n, ũn〉+ 〈G′′(û)ũn, ũn〉 and ‖rG(n)‖1 = o(γn),

we obtain from (27) that

G′(û)∆u0
n +

1

2
〈G′′(û)δun, δun〉 ≤ o(|∆u0

n|2) + rG(n) a.e. on M0.

Due to Assumption 2.1, there is a sequence ũGn such that

G′(û)(∆u0
n + ũGn) +

1

2
〈G′′(û)δun, δun〉 ≤ 0,

|ũGn| ≤ o(|∆u0
n|2) + c|rG(n)|,

with some c > 0. Set δvn = ∆u0
n + ũGn. Then

G′(û)δvn +
1

2
〈G′′(û)δun, δun〉 ≤ 0, ‖ũGn‖1 = o(γn), ‖ũGn‖∞ = o(1).

Consequently,

∫ 1

0

Hu(ŵ, p̂)δvn dt =

∫ 1

0

Hu(ŵ, p̂)∆u0
n dt+ o(γn). (56)

Obviously, δvn ∈ T
♭(2)
U (û, δun).

Step 13◦

Conditions (30), (51), (55), and (56) imply

ω(δwn) +

∫ 1

0

Hu(ŵ, p̂)δvn dt ≤ o(γ(δwn)). (57)

Since δwn ∈ K and δvn ∈ T
♭(2)
U (û, δun), condition (57) contradicts Assumption

2.4 in the form (16). The theorem is proven. ✷
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Remark 3.1 Here we would like to outline some prospects for further research.
Recently, together with V. Veliov, we studied sufficient conditions for a strong
metric subregularity (SMsR) of the optimality mapping associated with Pontrya-
gin’s local maximum principle for a Mayer-type optimal control problem without
control constraints. An important role in these conditions was played by the
second-order sufficient condition for a weak local minimum. A possible next
step in our study is to include the constraint G(u) ≤ 0 in the problem. We hope
that the result obtained in this work will be useful for this purpose.

There is another goal that we pursued in this work. In our joint works with
H. Frankowska, we managed to obtain the necessary second-order conditions for
optimal control problems with the constraint u ∈ U , where U is an arbitrary set
in R

m. Our results are formulated in terms of first and second order tangents
to the set U . It is interesting to obtain similar sufficient conditions for problems
with the general control constraint u ∈ U . We hope that the proof of the main
result of this paper will allow for such a generalization.
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