Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We prove the theorem stated in the title. This answers a question of John Cobb (1994). We also consider the case of the Hilbert space ℓ2.
Wydawca
Rocznik
Tom
Strony
53--62
Opis fizyczny
Bibliogr. 14 poz.
Bibliografia
- [1] L. Antoine, Sur les voisinages de deux figures homéomorphes, Fund. Math. 5 (1924), 265-287.
- [2] S. Barov, J. J. Dijkstra and M. van der Meer, On Cantor sets with shadows of prescribed dimension, Topology Appl. 159 (2012), 2736-2742.
- [3] K. Borsuk, An example of a simple arc in space whose projection in every plane has interior points, Fund. Math. 34 (1947), 272-277.
- [4] J. Cobb, Raising dimension under all projections, Fund. Math. 144 (1994), 119-128.
- [5] J. J. Dijkstra and J. van Mill, Projections of planar Cantor sets in potential theory, Indag. Math. (N.S.) 8 (1997), 173-180.
- [6] O. Frolkina, A Cantor set in Rd with “large” projections, Topology Appl. 157 (2010), 745-751.
- [7] O. Frolkina, Cantor sets with high-dimensional projections, Topology Appl. 275 (2020), art. 107020, 13 pp.
- [8] O. Frolkina, All projections of a typical Cantor set are Cantor sets, Topology Appl. 281 (2020), art. 107192, 11 pp.
- [9] O. Frolkina, A new simple family of Cantor sets in R3 all of whose projections are one-dimensional, Topology Appl. 288 (2021), art. 107452, 11 pp.
- [10] P. Gartside and M. Kovan-Bakan, On the space of Cantor subsets of R3, Topology Appl. 160 (2013), 1088-1098.
- [11] A. Kechris, Classical Descriptive Set Theory, Springer, 1995.
- [12] K. Kuratowski, Applications of the Baire-category method to the problem of independent sets, Fund. Math. 81 (1973), 65-72.
- [13] A. V. Kuz’minykh, The structure of typical compact sets in Euclidean space, Siberian Math. J. 38 (1997), 269-301.
- [14] J. Mycielski, Almost every function is independent, Fund. Math. 81 (1973), 43-48.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2955910-f6e5-45ce-bc78-d981935c04b5