
ADVANCES IN COMPUTER SCIENCE RESEARCH

EMPIRICAL COMPARISON OF METHODS OF DATA
DISCRETIZATION IN LEARNING PROBABILISTIC

MODELS

Michał Wójciak, Anna Łupińska–Dubicka
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Abstract: Very often statistical method or machine learning algorithms can handle dis-

crete attributes only. And that is why discretization of numerical data is an important part of

the pre–processing. This paper presents the results of the problem of data discretization in

learning quantitative part of probabilistic models. Four data sets taken from UCI Machine

Learning Repository were used to learn the quantitative part of the Bayesian networks. The

continuous variables were discretized using two supervised and two unsupervised discretiza-

tion methods. The main goal of this paper was to study whether method of data discretization

in given data set has an influence on model’s reliability. The accuracy was defined as the per-

centage of correctly classified records.
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1. Introduction

Often data are given in the form of continuous values. If their number is huge, build-

ing a proper model for such data can be difficult. Moreover, many data mining algo-

rithms operate only in discrete variable space. For instance, probabilistic models such

Bayesian networks, require discrete values for their nodes. In addition, discretization

also can work as a variable (feature) selection method that can significantly impact

the performance of classification algorithms used in the analysis of high–dimensional

data.

This paper presents the results of data discretization in problem of learning quan-

titative part of probabilistic models, in particular one of their prominent members –

Bayesian networks. One of the most important features of Bayesian networks is the
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fact that they provide an elegant mathematical structure for modeling complicated re-

lationships among random variables while keeping a relatively simple visualization

of these relationships.

The experiments involved learning the conditional probability distribution of

models created on the basis of four data set taken from UCI Machine Learning Repos-

itory [23]: Banknote authentication, Heart disease, Image segmentation and Abalone.

The main purpose of this article was to study whether method of data discretization

in given data set has an influence on model’s reliability. The accuracy was defined as

the percentage of correctly classified records.

The remainder of this paper is structured as follows. Section 2. explains the

problem of data discretization and shortly outlines the methods of it. Section 3. ex-

plains the basic concepts of Bayesian networks. Section 4. introduces selected data

sets and presents created Bayesian network models. Section 5. presents the results of

experiments conducted on data sets with implemented methods of data discretization.

Section 6. concludes the paper and indicates possible directions for further research.

2. Data discretization

Discretization of numerical data is an important part of the pre–processing, necessary

in typical processes of knowledge discovery and data mining. Transforming contin-

uous attribute values into their discrete counterparts enables further analysis using

data mining algorithms, such as learning parameters of probabilistic models (exist-

ing algorithms mainly assume discrete variables for nodes). Even in the absence of

such a requirement, discretization allows accelerating the process of data mining and

increasing the accuracy (accuracy) of predictions (classification) [3].

According to the surveys [3,6,8,11] and finally the advanced review [17] many

different discretization algorithms have been proposed in the last two decades. Their

authors used a different approach, derived from statistics, machine learning, infor-

mation theory and logic. In order to be able to better understand these issues, the

comparative criteria used should be taken into account [8,17]:

Local or global discretization – in the case of global discretization, the entire prob-

lem space is considered at the same time. Local discretization at the moment solves

only a selected subproblem. The division is made on the basis of a limited amount of

information.

Supervised or unsupervised – during supervised discretization the decision (class) of

each of the objects is taken into account. The main premise of supervision is to sepa-

rate instances having different decisions from each other. If the method does not use

information given by classes, it is known as unsupervised. The advantage of unsu-

178



Empirical comparison of methods of data discretization in learning probabilistic models

pervised methods is the ability to use them to discretize databases that do not have a

decision attribute.

Static or dynamic discretization – the static method of attribute dependence is not

taken into account. During one discretization cycle, the maximum number of inter-

vals for a given attribute is obtained, regardless of the others. Dynamic methods si-

multaneously consider cutting for many features, which allows the use of high–level

dependencies.

Due to the multitude of existing discretization methods, there is a need to intro-

duce quality assessment criteria [8]:

Number of intervals – the fewer intervals, the simpler the result table. It can be seen

that the problem of minimizing the number of intervals is synonymous with minimiz-

ing the number of cuts.

Number of inconsistencies – it would be best if discretization did not introduce addi-

tional inconsistencies over those contained in the input database. Otherwise signifi-

cant information can be lost.

Accuracy of predictions – defines how discretization helps to improve predictions. It

should be emphasized that this criterion depends on the classification method and the

procedure of conducting the experiment. It should also be emphasized that only the

first two criteria are directly measurable. The accuracy of predictions is a function of

both discretization and the classification algorithm. These criteria do not indicate un-

ambiguously which of the tested methods is the best. Depending on the chosen base

and the expected results, the weight of each criterion may fluctuate. What’s more,

there is no discretization method that would have an advantage over all criteria at the

same time.

As mentioned before, there are several method to discretize continuous vari-

ables. Below short description of four of them, used in this paper, is presented.

OneR algorithm [3,6] is a supervised method of discretization, using information

about the class. Values that have been previously sorted are divided into intervals

whose limits are set based on both continuous values and class labels. There is an

assumption that each of the intervals must contain a minimum number of examples

equals to k, where k is usually set to six. This assumption does not apply to the last

range, which contains other, ungrouped examples. The exception occurs when the

next attribute has the same class as most examples in a given range.

Chi merge algorithm [6,12,13,17] is a simple, supervised algorithm that uses the χ2

statistic to discretize numeric attributes. It checks each pair of adjacent rows in order

to determine if the class frequencies of the two intervals are significantly different. It

tests the hypothesis that the two adjacent intervals are independent. If the hypothesis

is confirmed the intervals are merged into a single interval, if not, they remain sepa-
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rated.

Equal–Width Discretization (EWD) algorithm [6,7,9,14,17,18] belongs to class

unsupervised methods. The main assumption of this algorithm is to divide the data

set into k intervals determined by the user of the algorithm. It first finds the minimum

and maximum values of every variable, Xi, and then divides this range into a number,

k, of user–specified, equal–width intervals. The discussed algorithm has one funda-

mental disadvantage – in most cases all elements of the data set will be unevenly

distributed in groups. In extreme cases, even empty sets may be created or one set

having more elements than all the others combined. Therefore, it is very important to

properly adjust the k parameter to minimize this span.

Equal–Frequency Discretization (EFD) algorithm [1,6,7,9,14,17], like EWD, is

a representative of the unsupervised discretization methods. It determines the min-

imum and maximum values of the variable Xi, sorts all values in ascending order,

and divides the range into a user–defined number of intervals k, in such a way that

every interval contains the equal number of sorted values. Each of these intervals

contains N/k elements, where N means the total number of Xi variable values. This

method eliminates the possibility of disproportionate intervals because the entire in-

terval <Xmin;Xmax > containing specific values is divided into compartments in terms

of a specific number of elements, not on the basis of ranges of values.

3. Bayesian Networks

Bayesian networks (also knows as belief networks or causal networks, BNs) [16] are

a special case of probabilistic models. They have found many practical application

over the years, among them the best known and probably the most successful are

decision support systems. Bayesian networks offer natural mechanism for reasoning

under uncertainty, when we do not have access to the full knowledge of the analyzed

phenomenon. They allow for easy and readable representations of the actual relation-

ships, which makes it easier to apply the real relationships. Furthermore, Bayesian

networks enable a combination of a priori knowledge and collected data.

Formally, a Bayesian network B is a pair <G ,Θ>, where G is an acyclic di-

rected graph in which nodes represent random variables X1, . . . ,Xn and edges rep-

resent direct dependencies between pairs of variables [16]. Θ represents the set of

parameters that describes the probability distribution for each node Xi in G , con-

ditional on its parents in G , i.e., P(Xi|Pa(Xi)). Often, the structure of the graph is

given as a causal interpretation, convenient from the point of view of knowledge en-

gineering and user interfaces. BNs allow for computing probability distributions over

subsets of their variables conditional on other subsets of observed variables. The joint
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probability distribution is represented as follows:

P(X1,X2, . . . ,Xn) =
N

∏
i=1

P(Xi|Pa(Xi)) (1)

where Pa(Xi) represents set of parents of Xi.

Using Equation 1 the occurrence of a specific state of all network variables can

be determined, knowing only their local conditional probabilities. Knowing the val-

ues of the variable that do not have parents in the graph (the root cause), the expected

value of the other nodes can be calculated, since each variable in the network depends

on them either directly or indirectly.

Note that in the Equation 1, probability of a random variable Xi depends only on

the states of its parents. This simplification resulting from the assumption of condi-

tional independence of variable, allows to represent the joint probability distribution

more compactly. This is particularly significant in the case of large–scale networks

with a large number of variables. If a network consists of n binary nodes, then the

full joint probability distribution would require storing 2n values. Using the factored

form would require n2k, where k is the maximum number of parents of a node.

4. Data sets and Models

For the purpose of this work, the UCI Machine Learning Repository [23] has been

searched and four data set containing continuous attributes were chosen: Banknote
authentication, Hearth disease, Statlog (image segmentation), and Abalone. Then, for

particular data set the probabilistic model were constructed. The graphical structure

of a Bayesian network represents a set of domain variables and relationships among

them.

4.1 Banknote authentication

The Banknote authentication [24] data set is a collection of data extracted from im-

ages of original and fake banknotes. The images were created using an industrial

camera used to control the print quality. The resulting images are 400 x 400 pixels

and 660 dpi. To extract interesting data from these images, a wavelet transformation

was used. The data set contains four continuous variable and one decision class. The

data set contains 1372 objects, however, some of them were removed due to the fact

that they contained missing elements, which could significantly lead to incorrect re-

sults of classification quality. Figure 1 presents the Bayesian network created on the

basis of Banknote authentication data set.
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Fig. 1. A Bayesian network model of Banknote authentication data set.

4.2 Hearth disease

The Hearth disease [25] is a data set presenting knowledge about the diagnosis of a

patient’s heart disease. The measurements were carried out in four locations around

the world: in Cleveland (United States, Ohio), in Budapest (Hungary), in Zurich

(Switzerland) and Long Beach (United States, California). For the purposes of the

work, only data collected by the clinic in Cleveland was used, as it was the only one

that was processed. The data does not contain real information about the personal

data of each of the patients examined. Data for the analysis of knowledge offered by

the Hearth disease collection has thirteen attributes (including four continuous ones)

and fourteenth, which is a decision class. The collection contains only 303 objects.

Figure 2 presents the Bayesian network created on the basis of Hearth disease data

set.

4.3 Statlog (image segmentation)

The Image segmentation [26] data set presents data extracted from seven pictures

presenting brick, sky, vegetation, cement, window, path and grass. These images were

adapted to analyze each pixel. All observations included in this set are presented for

nine–pixel blocks (3x3). The data was presented using 19 attributes, where 18 of them

were continuous attributes, one is a constant attribute and the twentieth attribute was a

decision class. The data set contains 2 310 observations. There are no missing values

in it, therefore all objects have been included in the research. Figure 3 presents the

Bayesian network created on the basis of Image segmentation data set.

4.4 Abalone

Abalone [27] is a data set presenting a few basic physical data of abalone – an edible

mollusc of warm seas, with a shallow ear-shaped shell lined with mother–of–pearl
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Fig. 2. A Bayesian network model of Hearth disease data set.

Fig. 3. A Bayesian network model of Statlog (image segmentation) data set.

and pierced with a line of respiratory holes. Based on these parameters, the age of the

abalone is determined. The age of the snail is determined by counting the number of

rings on the body using a microscope, but it is a very arduous and time–consuming
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process. The purpose of the collection is to determine the age of this creature without

using a microscope. The set is presented by one nominal attribute, seven continuous

attributes and ninth, which is a decision class. The above set contains 4177 observa-

tions and contains no missing data. Figure 4 presents the Bayesian network created

on the basis of Abalone data set.

Fig. 4. A Bayesian network model of Abalone data set.

5. Experiments and Results

The main goal of the conducted experiments was to examine how particular methods

of data discretization affect the quality of classification of created Bayesian network

models, which were learned using discretized data. The quality assessment was de-

termined by means of 10–fold cross–validation. Parameters of discretization methods

for research purposes were selected as follows:

– The OneR method as a supervised method does not require specification of the

interval length parameter because it is set to the value 6 in advance. However, it

has also been decided to test additional values: 7 and 8.

– The Chi Merge method requires the value of parameter χ2. During the research

confidence coefficients of 0.1, 0.2, 0.3 and 0.4 were used. The degree of freedom

was determined based on the number of classes in the classification attribute. For

the Banknote authentication set it was the value of 1, for Hearth disease the value

of 4, for Image segmentation the value of 6 and for the set of Abalone – 27.

– In case of EWD and EFD methods, the number of intervals k was set from 2 to

12.
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The empirical part of the paper was performed using SMILE, an inference en-

gine, and GeNIe Modeler, a development environment for reasoning in graphical

probabilistic models, both developed at BayesFusion LLC, and available at [22].

5.1 OneR method

Table 1 shows the results obtained for the OneR method. OneR as a supervised

method should not take parameters and its task is to classify based on the default

value of the minimum interval length equal to k = 6. However, as part of the research,

it has been decided to evaluate the quality of the network classification based on the

discretized sets of variables not only for the minimum number of elements 6 but also

for the minimum number of elements equal to 7 and 8. In the case of the Hearth

Table 1. The classification accuracy for the OneR discretization method for different intervals length.

k=6 k=7 k=8

Banknote 91.62% 91.18% 89.80%

H. disease 63.37% 74.59% 75.58%
Image seg. 74.51% 77.23% 76.17%

Abalone 45.70% 41.90% 42.40%

disease and Image segmentation data sets, this modification brought a positive result,

as the quality assessment increased relative to the result for the default parameter. In

the case of the hearth disease data set, an increase of over 12 percentage points was

achieved (for k = 8) and the best quality result for this set was obtained from among

all the methods studied. Image segmentation achieved a slight improvement of about

2.8% for intervals with k = 7.

5.2 Chi Merge method

Table 6.4 presents the classification results of the network for sets discretized using

the Chi Merge method. The best results were obtained for the smallest value of a con-

fidence test of 0.1. For the Abalone and Image segmentation data sets the best results

for values of 0.2 and 0.4 were obtained respectively. In addition, it can be observed

that with the increase of the confidence value, the overall quality of the classification

decreased. The exception is the set of Abalone for which the percentage of accurately

classified objects grew with the increase of this coefficient value reaching 56.33%,
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Table 2. The classification accuracy for the Chi Merge discretization method for different values of χ2.

χ2 = 0.1 χ2 = 0.2 χ2 = 0.3 χ2 = 0.4

Banknote 96.23% 96.04% 94.54% 92.28%

H. disease 61.22% 60.87% 59.79% 58.12%

Image seg. 69.43% 69.53% 68.71% 66.82%

Abalone 53.68% 52.91% 55.17% 65.33%

which is the highest quality value measured for this set among all the analyzed algo-

rithms. However, these fluctuations are not big for any of the data sets – the difference

between the maximum and minimum closing in around 3-4 percentage points.

5.3 EWD method

Table 3 presents the results obtained for the EWD method, taking into account the

value of parameter k (length of the interval). It can be noticed that the overall accuracy

Table 3. The classification accuracy for the EWD discretization method for different intervals length.

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12

Banknote 85.35% 94.1% 95.63% 97.67% 97.08% 98.03% 97.45% 95.77% 92.71% 94.9% 94.75%

H. disease 57.76% 57.43% 56.77% 56.11% 58.09% 58.75% 56.44% 57.10% 59.41% 55.45% 57.10%

Image seg. 68.87% 77.66% 79.57% 79.26% 80.74% 83.27% 83.94% – – – –

Abalone 22.60% 22.07% 24.28% 24.37% 25.19% 23.63% 26.22% 24.66% 24.83% 24.92% 23.94%

of the classification for the Abalone set is very low. The most probable reason is that

the decision class attribute contains as many as 28 decision classes that include very

diverse number of objects assigned to them. For the Image segmentation data set,

empty values mean that calculations were impossible due to hardware limitations

and the complexity of the Bayesian network. The EWD method worked well in the

case of the Banknote authentication data set, where the results are very high, mostly

exceeding 90%. The biggest differences between the maximum and minimum values

occur for the Image segmentation data set – the difference between the maximum

and minimum values is about 15%. The lowest range occurs for the Abalone data set,

which is around 3.6%.

5.4 EFD method

Table 4 shows the results obtained for EFD method taking into account the value of

parameter k, i.e. the length of the interval. The first conclusion is that the obtained
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results for each data set are weaker than in case of EWD method. In the case of

Table 4. The classification accuracy for the EFD discretization method for different intervals length.

k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=11 k=12

Banknote 88.12% 92.06% 97.89% 98.40% 98.25% 97.38% 94.9% 93.44% 92.27% 88.34% 86.88%

H. disease 58.42% 54.79% 58.42% 60.07% 55.45% 57.10% 55.78% 54.13% 57.43% 53.14% 55.12%

Image seg. 63.85% 78.87% 70.87% 60.3% 50.74% 54.23% 57.82 – – – –

Abalone 21.43% 21.33% 23.13% 24.83% 24.44% 24.37% 23.65% 21.45% 21.52% 22.62% 22.53%

the Image segmentation collection, this result is definitely weaker and the difference

was around 15 percentage points. In the case of other collections, they are about

1–2 percentage points. Again, a very poor classification result was achieved for the

Abalone data set – about 23% on an average level. In turn, the best results were

obtained by the Banknote authentication data set, with the difference that for the

higher values of parameter k, the classification quality for this set began to decrease.

When comparing the maximum quality results of the network classification, it can be

observed that for EFD method they are higher for the Banknote authentication and

Hearth disease data sets, and lower for the Image segmentation and Abalone. Very

clear difference in the quality of EWD and EFD methods can be seen in the case of

the Image segmentation data set.

5.5 Methods comparison

Figure 5 presents the comparison of classification accuracy of different discretization

methods for all data sets. For each analyzed data sets the best result for each particular

algorithm was chosen and presented in the chart. As can be noticed each of the data

sets received the best result for a different method. For the Hearth disease data set

(75.58%) the OneR method (for the interval length k = 8) turned out to be the best.

The Chi Merge method achieved the highest classification result (56.33%) for the

Abalone data set (with the confidence coefficient χ2 = 0.1). The EWD method with

number of intervals k = 5 proved to be the best for the Banknote authentication data

set (98.40%). On the other hand, the EFD method achieved the best result for the

Image segmentation data set equal to 83.94% for the length of the interval k = 8.

At this point it should be mentioned that the supervised methods present generally

higher quality than the unsupervised ones. However, this trend is not clearly visible

in obtained results. In the case of the analyzed data sets, the proportions were divided

in half.
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Fig. 5. The comparison of classification accuracy of different discretization methods for all data sets.

Regardless to the discretization method, the best results were achieved for Ban-
knote authentication data set – each method’s classification accuracy was above 90%.

The probabilistic model created for this set was the only one in the form of a naïve

Bayesian network. Taking into consideration the fact, that this data set contained only

about 1 000 objects, such result can confirm the hypothesis stated in [3] that the ac-

curacy of classification can depend on the complexity of created model and almost

any discretization method results in significant performance gains for naïve Bayes

networks.

The overall accuracy of the classification for the Abalone data set was very low –

below 50% in most cases. The most probable reason is that the decision class attribute

contains as many as 28 decision classes that include very uneven number of objects

assigned to them. In such case, the Chi Merge method proved to be the best with the

highest result about 65%.

6. Conclusion

The conducted research confirmed the belief that there is no universal discretization

method, which gives the best result in every data set. Therefore, it is very important to

carefully analyze the data on which the tests will be carried out. In order to choose the

most effective method, it is worth conducting an experiment using few discretization

methods. Basing on such experiment, the appropriate method should be chosen for

the given data set.
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The Banknote authentication data set, regardless of the method used, offers the

results of measured quality above 90%. Such result can be the basis to hypothesise

that the quality of classification does not only depend on the number and quantity

of the observations examined, but also on the designed network model and its com-

plexity. However, further experiments should be carried out using only naíve Bayes

network models to check if they produce similar results or not.

Research has also shown that models created for data sets such as Abalone,

which after the discretization process have many decision classes, achieve very poor

classification results regardless of the chosen method. For such type of data sets, the

Chi Merge method seemed to be a more universal method that produces good results,

regardless of the type or size of data input, relative to other methods of discretization

of sets. This does not mean, however, that it always achieved the best results. In

some literature [15,20], Chi Merge method is reported to achieve lower classification

error than those trained on data pre–processed by the other discretization methods.

However, further experiments would be advisable to confirm its effectiveness in the

case of data sets with a large number of attributes in the decision class.

At this point, it is also worth adding that in some literature [3] the supervised

methods were reported to achieve better results than the unsupervised ones while the

contradicting results were obtained by some others [2]. Also the results obtained in

this article (as well as in work [21]) do not confirm the superiority of supervised

method over unsupervised and vice versa. Therefore, further experimental compari-

son of of the unsupervised methods versus some of the common supervised methods

should be carried out. However, the unsupervised methods will still remain as the

only discretization option when we do not have prior known class labels required by

the supervised methods.
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PORÓWNANIE METOD DYSKRETYZACJI DANYCH
W UCZENIU MODELI PROBABILISTYCZNYCH

Streszczenie Bardzo często algorytmy uczenia maszynowego są nie są przystosowane do

korzystania ze zmiennych ciągłych. Z tego powodu dyskretyzacja danych jest istotną czę-
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ścią wstępnego przetwarzania. W artykule przedstawiono wyniki prac nad problemem dys-

kretyzacji danych w uczeniu modeli probabilistycznych. Cztery zestawy danych pobrane z

repozytorium uczenia maszynowego UCI zostały wykorzystane do nauczenia parametrów

ilościowej części sieci bayesowskich. Występujące w wybranych zbiorach zmienne ciągłe

były dyskretyzowane przy użyciu dwóch metod nadzorowanych i dwóch nienadzorowa-

nych. Głównym celem tego artykułu było zbadanie, czy metoda dyskretyzacji danych w

danym zbiorze ma wpływ na niezawodność modelu. Dokładność metod była definiowana

jako odsetek poprawnie sklasyfikowanych rekordów.

Słowa kluczowe: dyskretyzacja, zmienne typu ciągłego, modele probabilistyczne, sieci

Bayesa, klasyfikacja

Artykuł częściowo zrealizowano w ramach pracy badawczej S/WI/2/2018.
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