Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (17 ; 04-07.09.2022 ; Sofia, Bulgaria)
Języki publikacji
Abstrakty
This article presents an application of an XGBoostand deep neural network ensemble as a solution for a task assigned at the FedCSIS 2022 Challenge: Predicting the Costs of Forwarding Contracts. We demonstrate that prediction quality can be improved by combining the two approaches. We present a neural network architecture based on three independent flows. We then discuss the influence of long short-term memory units on the risk of overfitting. Finally, we show that the static XGBoost model can complement a neural network that processes dynamic data.
Słowa kluczowe
Rocznik
Tom
Strony
425--429
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
autor
Bibliografia
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b291d770-63fa-4b65-8835-3e66be12c9a9