PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The use of a genetic algorithm in the process of optimizing the shape of a three-dimensional periodic beam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mechanical periodic structures exhibit unusual dynamic behavior thanks to the periodicity of their structures, which can be attributed to their cellular arrangement. The source of this periodicity may result from periodic variations of material properties within their cells and/or variations in the cell geometry. The authors present the results of their studies on the optimization of physical parameters of a three-dimensional axisymetrical periodic beam in order to obtain the desired vibroacoustic properties. The aim of the optimization process of the unit cell shape was to obtain band gaps of a given width and position in the frequency spectrum.
Rocznik
Strony
601--613
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Gdansk University of Technology, Digital Technologies Center, Gdansk, Poland
  • Gdansk University of Technology, Department of Biomechatronics, Gdansk, Poland
  • Gdansk University of Technology, Digital Technologies Center, Gdansk, Poland
  • Gdansk University of Technology, Department of Biomechatronics, Gdansk, Poland
  • Gdansk University of Technology, Digital Technologies Center, Gdansk, Poland
  • Gdansk University of Technology, Department of Biomechatronics, Gdansk, Poland
  • Gdansk University of Technology, Department of Control Engineering, Gdansk, Poland
  • Gdansk University of Technology, Department of Biomechatronics, Gdansk, Poland
Bibliografia
  • 1. Ashcroft N.W., Mermin N.D., 2022, Solid State Physics, Cengage Learning.
  • 2. Brillouin L., 1953, Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, 2, Dover Publications.
  • 3. Chen Y., Zhou S., Li Q., 2010,Multiobjective topology optimization for finite periodic structures, Computers and Structures, 88, 11, 806-811.
  • 4. Goldberg D.E., Holland J.H., 1988, Genetic algorithms and machine learning, Machine Learning , 3, 95-99.
  • 5. Halkjær S., Sigmund O., Jensen J.S., 2006, Maximizing band gaps in plate structures, Structural and Multidisciplinary Optimization, 32, 263-275.
  • 6. Hsu J.-C., 2011, Local resonances-induced low-frequency band gaps in two-dimensional phononic crystal slabs with periodic stepped resonators, Journal of Physics D: Applied Physics, 44, 5, 055401.
  • 7. Ji W., Chang J., Xu H.-X., Gao J. R., Gröblacher S. et al., 2023, Recent advances in metasurface design and quantum optics applications with machine learning, physics-informed neural networks, and topology optimization methods, Light: Science and Applications, 12, 1.
  • 8. Lee S.H., Park C.M., Seo Y.M., Wang Z.G., Kim C.K., 2010, Composite acoustic medium with simultaneously negative density and modulus, Physical Review Letters, 104, 5, 054301.
  • 9. Liu X., Hu G., Sun C., Huang G., 2011, Wave propagation characterization and design of two-dimensional elastic chiral metacomposite, Journal of Sound and Vibration, 330, 11, 2536-2553.
  • 10. Sigmund O., 1994, Materials with prescribed constitutive parameters: An inverse homogenization problem, International Journal of Solids and Structures, 31, 17, 2313-2329.
  • 11. Tantikom K., Aizawa T., Mukai T., 2005, Symmetric and asymmetric deformation transition in the regularly cell-structured materials. Part I: Experimental study, International Journal of Solids and Structures, 42, 8, 2199-2210.
  • 12. Witkowski W., Kuik L., Rucka M., Daszkiewicz K., Andrzejewska A., Łuczkiewicz P., 2021, Medially positioned plate in first metatarsophalangeal joint arthrodesis, PLOS ONE, 16.
  • 13. Xia L., Breitkopf P., 2015, Multiscale structural topology optimization with an approximate constitutive model for local material microstructure, Computer Methods in Applied Mechanics and Engineering, 286, 147-167.
  • 14. Xiao Y., Wen J., Wang G., Wen X., 2013, Theoretical and experimental study of locally resonant and Bragg band gaps in flexural beams carrying periodic arrays of beam-like resonators, Journal of Vibration and Acoustics, 135, 4, 041006.
  • 15. Yang S., Page J.H., Liu Z., Cowan M.L., Chan C.T., Sheng P., 2004, Focusing of sound in a 3D phononic crystal, Physical Review Letters, 93, 024301.
  • 16. Yu D., Liu Y., Zhao H.,Wang G., Qiu J., 2006, Flexural vibration band gaps in Euler-Bernoulli beams with locally resonant structures with two degrees of freedom, Physical Review B, 73, 064301.
  • 17. Yu X., Zhou J., Liang H., Jiang Z., Wu L., 2018, Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Progress in Materials Science, 94, 114-173.
  • 18. Żak A., Krawczuk M., Palacz M., Doliński L., Waszkowiak W., 2017, High frequency dynamics of an isotropic Timoshenko periodic beam by the use of the time-domain spectral finite element method, Journal of Sound and Vibration, 409, 318-335.
  • 19. Żak A., Krawczuk M., Redlarski G., Doliński L., Koziel S., 2019, A three-dimensional periodic beam for vibroacoustic isolation purposes, Mechanical Systems and Signal Processing, 130, 524-544.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b29046ba-6291-4a69-9de2-0b0f8fe2a1f8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.