Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Aerosol jet printing (AJP) is a contactless direct-write approach aimed at the production of fine features on a wide range of substrates. The technology has been explored for a variety of applications, including active and passive electronic components, actuators, sensors, and a variety of selective chemical and biological responses. However, the quality of conductive traces printed with nanoparticle inks using AJP can be affected by several factors, including carrier and sheath gas flow rate, ink properties, and substrate material properties. A typical defect present in the prints, such as non-uniform metal particle distribution, solvent local concentration, porosity, delamination, and bubbles, can be reduced by additional ultrasonic post-printing treatment. Therefore, the article investigates the influence of the self-designed sonotrode tool on the quality of conductive traces printed with nanoparticle inks using AJP. An ultrasonic head was fixed in a tandem position behind a printing nozzle at a distance equal to the node of ultrasonic waves. In this article, it was found that ultrasound has a positive effect on the quality of printed traces by improving degassing with simultaneous uniform particle distribution. As a result, the surface open porosity obtained for printed and ultrasonically treated traces was decreased almost seven times from 17.2 to 2.7%, respectively. An improved surface and structural morphology increased electrical resistivity in the prints from 6.85 to 4.57 µΩ cm. The analysis included quantifying the macroscale geometry, electrical properties, and micromorphological characteristics of the traces. The results of this article suggest that the application of ultrasonic-assisted aerosol jet printing with a proper tool improves the quality of AJP prints.
Wydawca
Czasopismo
Rocznik
Tom
Strony
111--127
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
autor
- Wroclaw University of Technology: Faculty of Mechanical Engineering Wrocław, Poland
autor
- Wroclaw University of Technology: Faculty of Mechanical Engineering Wrocław, Poland
autor
- Wroclaw University of Technology, Faculty of Electronics, Photonics and MicrosystemsWrocław, Poland
autor
- Wroclaw University of Technology: Faculty of Mechanical Engineering Wrocław, Poland
Bibliografia
- [1] Wu, W., Inorganic nanomaterials for printed electronics: a review, Nanoscale, 2017, 9: 7342–7372, 10.1039/C7NR01604B
- [2] Suganuma, K., Introduction to printed electronics, New York, NY: Springer; 2014, 10.1007/978-1-4614-9625-0
- [3] Shaik, R.A., Rufus, E., Recent trends and role of large area flexible electronics in shape sensing application – a review, Ind. Robot. Int. J. Robot Res. Appl., 2021, 48: 745–762, 10.1108/IR-10-2020-0234
- [4] Choi, H.W., Zhou, T., Singh, M., Jabbour, G.E., Recent developments and directions in printed nanomaterials, Nanoscale, 2015, 7: 3338–3355, 10.1039/C4NR03915G
- [5] Mosa, MdA, Jo, J.Y., Kwon, K.-S., Fast on-off jet control of aerosol jet printing (AJP) using internal rotary valve, Addit. Manuf., 2023, 67: 103466, 10.1016/j.addma.2023.103466
- [6] Seiti, M., Degryse, O., Ferraris, E., Aerosol Jet® printing 3D capabilities for metal and polymeric inks, Mater. Today Proc., 2022, 70: 38–44, 10.1016/j.matpr.2022.08.488
- [7] Tursunniyaz, M., Meredith, A., Andrews, J., Aerosol jet printed resistive temperature sensors with high sensitivity, Sens. Actuators A Phys., 2023, 364: 114777, 10.1016/j.sna.2023.114777
- [8] Ramesh, S., Mahajan, C., Gerdes, S., Gaikwad, A., Rao, P., Cormier, D.R., et al., Numerical and experimental investigation of aerosol jet printing, Addit. Manuf., 2022, 59: 103090, 10.1016/j.addma.2022.103090
- [9] Hines, D.R., Gu, Y., Martin, A.A., Li, P., Fleischer, J., Clough-Paez, A., et al., Considerations of aerosol-jet printing for the fabrication of printed hybrid electronic circuits, Addit. Manuf., 2021, 47: 102325, 10.1016/j.addma.2021.102325
- [10] Zhu, Y., Yu, L., Wu, D., Lv, W., Wang, L., A high-sensitivity graphene ammonia sensor via aerosol jet printing, Sens. Actuators A Phys., 2021, 318: 112434, 10.1016/j.sna.2020.112434
- [11] Ako, H., O’Mahony, J., Hughes, H., McLoughlin, P., O’Reilly, N.J., A novel approach to the manufacture of dissolving microneedles arrays using aerosol jet printing, Appl. Mater. Today, 2023, 35: 101958, 10.1016/j.apmt.2023.101958
- [12] Gamba, L., Lajoie, J.A., Sippel, T.R., Secor, E.B., Multi-material aerosol jet printing of Al/Cuo nanothermites for versatile fabrication of energetic antennas, Adv. Funct. Mater., 33: 2304060, 10.1002/adfm.202304060
- [13] Fisher, C., Skolrood, L.N., Li, K., Joshi, P.C., Aytug, T., Aerosol-jet printed sensors for environmental, safety, and health monitoring: a review, Adv. Mater. Technol., 2023, 8: 2300030, 10.1002/admt.202300030
- [14] Degryse, O., Bloemen, V., Ferraris, E., Collagen composite inks for Aerosol Jet® printing in bone tissue engineering applications, Procedia CIRP, 2022, 110: 180–185, 10.1016/j.procir.2022.06.033
- [15] Wilkinson, N.J., Smith, M.A.A., Kay, R.W., Harris, R.A., A review of aerosol jet printing—a non-traditional hybrid process for micro-manufacturing, Int. J. Adv. Manuf. Technol., 2019, 105: 4599–4619, 10.1007/s00170-019-03438-2
- [16] Skarżyński, K., Krzemiński, J., Jakubowska, M., Słoma, M., Highly conductive electronics circuits from aerosol jet printed silver inks, Sci. Rep., 2021, 11: 1–9, 10.1038/s41598-021-97312-5
- [17] Taccola, S., da Veiga, T., Chandler, J.H., Cespedes, O., Valdastri, P., Harris, R.A., Micro-scale aerosol jet printing of superparamagnetic Fe3O4 nanoparticle patterns, Sci. Rep., 2022, 12: 17931, 10.1038/s41598-022-22312-y
- [18] Safaee, S., Schock, M., Joyee, E.B., Pan, Y., Chen, R.K., Field-assisted additive manufacturing of polymeric composites, Addit. Manuf., 2022, 51: 102642, 10.1016/j.addma.2022.102642
- [19] Moon, S.K., Ng, N.P.H., Chen, L., Ahn, D.-G., A novel quality inspection method for aerosol jet printed sensors through infrared imaging and machine learning, CIRP Ann., 2023, 72: 165–168, 10.1016/j.cirp.2023.03.029
- [20] Dunst, P., Hemsel, T., Bornmann, P., Littmann, W., Sextro, W., Optimization of ultrasonic acoustic standing wave systems, Actuators, 2020, 9: 9, 10.3390/act9010009
- [21] Ostasevicius, V., Jurenas, V., Golinka, I., Gaidys, R., Aleksa, A., Separation of microparticles from suspension utilizing ultrasonic standing waves in a piezoelectric cylinder actuator, Actuators, 2018, 7: 14, 10.3390/act7020014
- [22] Haake, A., Dual, J., Micro-manipulation of small particles by node position control of an ultrasonic standing wave, Ultrasonics, 2002, 40: 317–322, 10.1016/S0041-624X(02)00114-2
- [23] Ikram, A., Mehmood, F., Sheridan, R.S., Awais, M., Walton, A., Eldosouky, A., et al., Particle size dependent sinterability and magnetic properties of recycled HDDR Nd–Fe–B powders consolidated with spark plasma sintering, J. Rare Earths, 2020, 38: 90–99, 10.1016/j.jre.2019.02.010
- [24] Cravotto, G., Gaudino, E.C., Cintas, P., On the mechanochemical activation by ultrasound, Chem. Soc. Rev., 2013, 42: 7521–7534, 10.1039/C2CS35456J
- [25] Harris, N.R., Hill, M., Particle manipulation using ultrasonic fields, In: Li, D., (Ed.). Encyclopedia of microfluidics and nanofluidics, US, Boston, MA: Springer; 2008, p. 1597–1602, 10.1007/978-0-387-48998-8_1186
- [26] Courtney, C.R.P., Ong, C.-K., Drinkwater, B.W., Bernassau, A.L., Wilcox, P.D., Cumming, D.R.S., Manipulation of particles in two dimensions using phase controllable ultrasonic standing waves, Proc. R. Soc. A Math. Phys. Eng. Sci., 2011, 468: 337–360, 10.1098/rspa.2011.0269
- [27] Hill, M., Harris, N.R., Ultrasonic particle manipulation, In: Hardt S., Schönfeld F., (Eds.). Microfluidic technologies for miniaturized analysis systems, US, Boston, MA: Springer; 2007, p. 357–392, 10.1007/978-0-387-68424-6_9
- [28] Łapa, W., Winnicki, M., Orłowska, K., Investigation of aerosol droplets diameter generated in aerosol jet printing, Mater. Sci. Poland, 2022, 40: 78–90, 10.2478/msp-2022-0046
- [29] Sreenilayam, S.P., McCarthy, É, McKeon, L., Ronan, O., McCann, R., Fleischer, K., et al., Additive-free silver nanoparticle ink development using flow-based laser ablation synthesis in solution and aerosol jet printing, Chem. Eng. J., 2022, 449: 137817, 10.1016/j.cej.2022.137817
- [30] Williams, B.A., Trejo, N.D., Wu, A., Holgate, C.S., Francis, L.F., Aydil, E.S., Copper–zinc–tin–sulfide thin films via annealing of ultrasonic spray deposited nanocrystal coatings, ACS Appl. Mater. Interfaces, 2017, 9: 18865–18871, 10.1021/acsami.7b04414
- [31] Binder, S., Glatthaar, M., Rädlein, E., Analytical investigation of aerosol jet printing, Aerosol Sci. Technol., 2014, 48: 924–929, 10.1080/02786826.2014.940439
- [32] Secor, E.B., Principles of aerosol jet printing, Flex. Print. Electron., 2018, 3, 035002, 10.1088/2058-8585/aace28
- [33] Alhendi, M., Sivasubramony, R.S., Lombardi, J., Weerawarne, D.L., Borgesen, P., Poliks, M.D., et al., Laser sintering of aerosol jet printed conductive interconnects on paper substrate, 2019 IEEE 69th Electronic Components and Technology Conference (ECTC), 2019, p. 1581–1587, 10.1109/ECTC.2019.00243
- [34] Gramlich, G., Huber, R., Häslich, F., Bhutani, A., Lemmer, U., Zwick, T., Process considerations for Aerosol-Jet printing of ultra fine features, Flex. Print. Electron., 2023, 8, 035002, 10.1088/2058-8585/ace3d8
- [35] Sui, Y., Tsui, L., Thibodeaux, A.J., Lavin, J.M., An aerosol jet printed resistance temperature detector-micro hotplate with temperature coefficient of resistance stabilized by electrical sintering, Adv. Mater. Technol., 2023, 8, 2202053, 10.1002/admt.202202053
- [36] Pandhi, T., Kreit, E., Aga, R., Fujimoto, K., Sharbati, M.T., Khademi, S., et al., Electrical transport and power dissipation in aerosol-jet-printed graphene interconnects, Sci. Rep., 2018, 8, 10842, 10.1038/s41598-018-29195-y
- [37] Zhang, Y., Chen, X., Particle separation in microfluidics using different modal ultrasonic standing waves, Ultrason. Sonochem., 2021, 75, 105603, 10.1016/j.ultsonch.2021.105603
- [38] Silva, G.T., Lopes, J.H., Leão-Neto, J.P., Nichols, M.K., Drinkwater, B.W., Particle patterning by ultrasonic standing waves in a rectangular cavity, Phys. Rev. Appl., 2019, 11, 054044, 10.1103/PhysRevApplied.11.054044
- [39] Winnicki, M., Łapa, W., Świadkowski, B., A novel approach to improve reliability of aerosol jet printing process, EiN – Maintenance and Reliability, 2024, 26(2), 10.17531/ein/180012
- [40] Kinart, A.E., Moscicki, A.J., Nano-inks for printing electric circuits for microelectronics technology, 2014, https://science24.com/paper/31307#gsc.tab=0 (access 16 July 2024).
- [41] Gallego-Juárez, J.A., Graff, K.F., 1 - Introduction to power ultrasonics, In: Gallego-Juárez J. A., Graff K. F., (Eds.). Power ultrasonics, Oxford: Woodhead Publishing; 2015, p. 1–6, 10.1016/B978-1-78242-028-6.00001-6
- [42] Seah, K.H.W., Wong, Y.S., Lee, L.C., Design of tool holders for ultrasonic machining using FEM, J. Mater. Process. Technol., 1993, 37, 801–816, 10.1016/0924-0136(93)90138-V
- [43] Dipal, A., Analysis of different shaped sonotrodes used for plastic welding. Conference paper, Institute of Technology, Nirma University; 2011
- [44] Yassin, M.M., Design of ultrasonic processing device for aluminum surfaces, Master thesis, Waterloo, Ontario, Canada: Univ. of Waterloo; 2018
- [45] Nad, M., Ultrasonic horn design for ultrasonic machining technologies, Appl. Comput. Mech., 2010, 4, 79–88
- [46] Liesegang, M., Yu, Y., Beck, T., Balle, F., Sonotrodes for ultrasonic welding of titanium/CFRP-joints—materials selection and design, J. Manuf. Mater. Process., 2021, 5, 61, 10.3390/jmmp5020061
- [47] Wang, Y., Chen, Z., Yu, Q., Cheng, F., Modeling of sonotrode system of ultrasonic consolidation with transfer matrix method, Front. Mater., 2021, 8, 642896, 10.3389/fmats.2021.642896 (accessed January 2, 2024)
- [48] Li, H., Cao, B., Liu, J., Yang, J., Modeling of high-power ultrasonic welding of Cu/Al joint, Int. J. Adv. Manuf. Technol., 2018, 97, 833–844, 10.1007/s00170-018-2002-1
- [49] Li, H., Cao, B., Yang, J.W., Liu, J., Modeling of resistance heat assisted ultrasonic welding of Cu-Al joint, J. Mater. Process. Technol., 2018, 256, 121–130, 10.1016/j.jmatprotec.2018.02.008
- [50] Rurup, J.D., Secor, E.B., A real-time process diagnostic to support reliability, control, and fundamental understanding in aerosol jet printing, Adv. Eng. Mater., 26, 2301348, 10.1002/adem.202301348
- [51] Li, L., Zhang, K., Cheng, H., Ma, T., Niu, Y., Li, A., et al., Experimental and simulation investigations on the morphology of aerosol jet printed polymer traces under in-situ UV and thermal curing conditions, Addit. Manuf., 2023, 69, 103515, 10.1016/j.addma.2023.103515
- [52] Vaithilingam, J., Simonelli, M., Saleh, E., Senin, N., Wildman, R.D., Hague, R.J.M., et al., Combined inkjet printing and infrared sintering of silver nanoparticles using a swathe-by-swathe and layer-by-layer approach for 3-dimensional structures, ACS Appl. Mater. Interfaces, 2017, 9, 6560–6570, 10.1021/acsami.6b14787
- [53] Abramov, V.O., Abramova, A.V., Bayazitov, V.M., Nikonov, R.V., Cravotto, G., Pores-free aluminium alloy by efficient degassing ultrasonic treatments, Appl. Acoust., 2021, 184, 108343, 10.1016/j.apacoust.2021.108343
- [54] Białas, K., Buchacz, A., Active reduction of vibration of mechatronic systems, EiN, 2015, 17, 528–534, 10.17531/ein.2015.4.7
- [55] Wu, H., Zheng, H., Li, Y., Ohl, C.-D., Yu, H., Li, D., Effects of surface tension on the dynamics of a single micro bubble near a rigid wall in an ultrasonic field, Ultrason. Sonochem., 2021, 78, 105735, 10.1016/j.ultsonch.2021.105735
- [56] Sarasua, J.A., Rubio, L.R., Aranzabe, E., Vilela, J.L.V., Energetic study of ultrasonic wettability enhancement, Ultrason. Sonochem., 2021, 79, 105768, 10.1016/j.ultsonch.2021.105768
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b28ef15d-c75b-4297-a063-7cbef4a47f80