PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Energy Analysis of Cavitation Bubbles Under Dual-Frequency Acoustic Excitation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cavitation has been widely used in wastewater degradation, material synthesis and biomedical field under dual-frequency acoustic excitation. The applications of cavitation are closely related to the power (i.e. the rate of internal energy accumulation) during bubble collapse. The Keller–Miksis equation considering liquid viscosity, surface tension and liquid compressibility is used to describe the radial motion of the bubble. The model is built in predicting the power during bubble collapse under dual-frequency acoustic excitation. The influences of parameters (i.e. phase difference, frequency difference, and amplitude ratio) on the power are investigated numerically. With the increase of phase difference, the power can be fluctuated in a wide range at all conditions. Three typical characteristics of the power appear under the effects of frequency difference and amplitude ratio. With the increase of amplitude ratio, if the frequency difference is small, the power has two maximum values; and if the frequency difference is medium, there is a maximum value. Otherwise, the power monotonously decreases. The results can provide theoretical references for the selections of experimental parameters of sonoluminescence and sonochemistry in the dual-frequency acoustic field.
Rocznik
Strony
513--518
Opis fizyczny
Bibliogr. 25 poz., wykr.
Twórcy
autor
  • School of Mechano-Electronic Engineering, Suzhou Vocational University Suzhou, China
autor
  • Department of Sports Health and Art Education, Hebei Petroleum University of Technology Chengde, China
autor
  • Department of Sports Health and Art Education, Hebei Petroleum University of Technology Chengde, China
autor
  • Department of Sports Health and Art Education, Hebei Petroleum University of Technology Chengde, China
autor
  • School of Mechano-Electronic Engineering, Suzhou Vocational University Suzhou, China
Bibliografia
  • 1. Brotchie A., Grieser F., Ashokkumar M. (2010), Characterization of acoustic cavitation bubbles in different sound fields, Journal of Physical Chemistry B, 114(34): 11010-11016, doi: 10.1021/jp105618q.
  • 2. Coussios C.C., Roy R.A. (2008), Applications of acoustics and cavitation to noninvasive therapy and drug delivery, Annual Review of Fluid Mechanics, 2008, 40(1): 395-420, doi: 10.1146/annurev.fluid.40.111406.102116.
  • 3. Guédra M., Inserra C., Gilles B. (2017), Accompanying the frequency shift of the nonlinear resonance of a gas bubble using a dual-frequency excitation, Ultrasonics Sonochemistry, 38(1): 298-305, doi: 10.1016/j.ultsonch.2017.03.028.
  • 4. Holzfuss J., Rüggeberg M., Mettin R. (1998), Boosting sonoluminescence, Physical Review Letters, 81(9): 1961-1964, doi: 10.1103/PhysRevLett.81.1961.
  • 5. Huang X.T., Zhou C.H., Suo Q.Y., Zhang L.T., Wang S.H. (2018), Experimental study on viscosity reduction for residual oil by ultrasonic, Ultrasonics Sonochemistry, 41(1): 661-669, doi: 10.1016/j.ultsonch.2017.09.021.
  • 6. Kanthale P.M., Brotchie A., Ashokkumar M., Grieser F. (2008), Experimental and theoretical investigations on sonoluminescence under dual frequency conditions, Ultrasonics Sonochemistry, 15(4): 629-635, doi: 10.1016/j.ultsonch.2007.08.006.
  • 7. Koda S., Kimura T., Kondo T., Mitome H. (2003), A standard method to calibrate sonochemical efficiency of an individual reaction system, Ultrasonics Sonochemistry, 10(3): 149-156, doi: 10.1016/S1350-4177(03)00084-1.
  • 8. Krefting D., Mettin R., Lauterborn W. (2002), Two-frequency driven single-bubble sonoluminescence, Journal of the Acoustical Society of America, 112(5): 1918-1927, doi: 10.1121/1.1509427.
  • 9. Loske A.M., Prieto F.E., Fernández F., Cauwelaert J.V. (2002), Tandem shock wave cavitation enhancement for extracorporeal lithotripsy, Physics in Medicine and Biology, 47(22): 3945-3957, doi: 10.1088/ 0031-9155/47/22/303.
  • 10. Lv L., Zhang Y. X., Wang L.Y. (2020), Effects of liquid compressibility on the dynamics of ultrasound contrast agent microbubbles, Fluid Dynamics Research, 52(5): 1-17, doi: 10.1088/1873-7005/abb09b.
  • 11. Mason T.J. (2016), Ultrasonic cleaning: An historical perspective, Ultrasonics Sonochemistry, 29: 519-523, doi: 10.1016/j.ultsonch.2015.05.004.
  • 12. Merouani S., Hamdaoui O., Rezgui Y., Guemini M.(2014), Energy analysis during acoustic bubble oscillations: Relationship between bubble energy and sonochemical parameters, Ultrasonics, 54(1): 227-232, doi: 10.1016/j.ultras.2013.04.014.
  • 13. Mettin R., Akhatov I., Parlitz U., Ohl C.D., Lauterborn W. (1997), Bjerknes forces between small cavitation bubbles in a strong acoustic field, Physical Review E, 56(3): 2924-2931, doi: 10.1103/PhysRevE.56.2924.
  • 14. Moholkar V.S. (2009), Mechanistic optimization of a dual frequency sonochemical reactor, Chemical Engineering Science, 64(24): 5255-5267, doi: 10.1016/j.ces.2009.08.037.
  • 15. Moshaii A., Sadighi-Bonabi R. (2004), Role of liquid compressional viscosity in the dynamics of a sonoluminescing bubble, Physical Review E, 70: 016304, doi: 10.1103/physreve.70.016304.
  • 16. Suo D.J., Govind B., Zhang S.Q., Jing Y. (2018), Numerical investigation of the inertial cavitation threshold under multi-frequency ultrasound, Ultrasonics Sonochemistry, 41: 419-426, doi: 10.1016/j.ultsonch.2017.10.004.
  • 17. Tatake P.A., Pandit A.B. (2002), Modelling and experimental investigation into cavity dynamics and cavitational yield: Influence of dual frequency ultrasound sources, Chemical Engineering Science, 57(22): 4987-4995, doi: 10.1016/S0009-2509(02)00271-3.
  • 18. Tinguely M., Obreschkow D., Kobel P., Dorsaz N., Bosset A., Farhat M. (2012), Energy partition at the collapse of spherical cavitation bubbles, Physical Review E, 86: 046315, doi: 10.1103/Phys-RevE.86.046315.
  • 19. Waldo N.B., Vecitis C.D. (2018), Combined effects of phase-shift and power distribution on efficiency of dual high-frequency sonochemistry, Ultrasonics Sonochemistry, 41(1): 100-108, doi: 10.1016/j.ultsonch.2017.09.010.
  • 20. Yang X., Church C.C. (2005), A model for the dynamics of gas bubbles in soft tissue, The Journal of the Acoustical Society of America, 118(6): 3595-3606, doi: 10.1121/1.2118307.
  • 21. Yeh C.K., Su S.Y., Shen C.C., Li M.L. (2008), Dual high-frequency difference excitation for contrast detection, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 55(10): 2164-2175, doi: 10.1109/TUFFC.916.
  • 22. Zhang Y.N., Billson D., Li S.C. (2015), Influences of pressure amplitudes and frequencies of dual-frequency acoustic excitation on the mass transfer across interfaces of gas bubbles, International Communications in Heat and Mass Transfer, 66: 167-171, doi: 10.1016/j.icheatmasstransfer.2015.05.026.
  • 23. Zhang Y.N., Du X.Z., Xian H.Z., Wu Y.L. (2015), Instability of interfaces of gas bubbles in liquids under acoustic excitation with dual frequency, Ultrasonics Sonochemistry, 23(1): 16-20, doi: 10.1016/j.ultsonch.2014.07.021.
  • 24. Zhang Y.N., Zhang Y.N., Li S.C. (2017), Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation, Ultrasonics Sonochemistry, 35(Part A): 431-439, doi: 10.1016/j.ultsonch.2016.10.022.
  • 25. Zupanc M., Pandur Ž., Perdih T.S., Stopar D., Petkovšek M., Dular M. (2016), Effects of cavitation on different microorganisms: The current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research, Ultrasonics Sonochemistry, 57: 147-165, doi: 10.1016/j.ultsonch.2019.05.009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b284ba62-1010-48e9-aa70-afea5dbc52fc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.