PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adsorption Kinetic and Isotherm Studies of Reactive Red B Textile Dye Removal Using Activated Coconut Leaf Stalk

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Textile wastewater has become one of the serious environmental problems due to containing a high concentration of chemicals with extreme color intensity. Reactive red RB is among the synthetic azo dyes commonly used as a textile colorant with their property are very difficult to degrade naturally. This research was focused on studying the kinetic behavior, and adsorption isotherm of reactive red RB textile dye on coconut leaf stalk activated carbon (CLSC). Coconut leaf stalk carbon was activated using sulphuric acid and sodium hydroxide. It was investigated in terms of chemical functional groups, surface morphology, carbon content, ash content, and adsorption efficiency of reactive red RB textile dye under various conditions of initial pH, incubation time, and dye concentration. The results showed the maximum adsorption efficiency of reactive red RB dye with a concentration dye of 60 mg/l onto CLSC surface activated by sulfuric acid and sodium hydroxide in an experiment carried out at pH 5 for 120 min were 88.73% and 64.27%, respectively. The adsorption isotherm of reactive red RB on the CLSC surface follows the Langmuir isotherm model, which shows that the adsorption process occurs monolayer. In contrast, the adsorption kinetics correspond to pseudo-second-order.
Twórcy
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja, 81116, Bali, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja, 81116, Bali, Indonesia
  • Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja, 81116, Bali, Indonesia
Bibliografia
  • 1. Ali F., Ali N., Bibi I., Said A., Nawaz S., Ali Z., Salman S.M., Iqbal H.M.N., Bilal M. 2020. Adsorption isotherm, kinetics and thermodynamic of acid blue and basic blue dyes onto activated charcoal. Case Studies in Chemical and Environmental Engineering. 2, 1–6.
  • 2. Ali N., Awais., Kamal T., Ul-Islam M., Khan A., Shah S.J., Zada A. 2018. Chitosan-coated cotton cloth supported copper nanoparticles for toxic dye reduction. Int. J. Biol. Macromol., 111, 832–838.
  • 3. Al-Kdasi A., Idris A., Saed K., Guan C.T. 2004. Treatment of textile wastewater by advanced oxidation processes - a review. Global Nest Int. J., 6(3), 222–230.
  • 4. Agustina T.E., Melwita E., Bahrin D., Gayatri R., Purwaningtyas I.F. 2020. Synthesis of nano-photocatalyst ZnO-Natural Zeolite to degrade procion red. Int. J. Technol.,11(3), 472–281.
  • 5. Bhatti H.N., Sadaf S., Aleem A. 2015. Treatment of textile effluents by low cost agricultural waste: Batch biosorption study. J. Anim. Plant. Sci., 25(1), 284–289.
  • 6. Buthiyappan A., Azis A., Rahman A. 2019. Energy intensified integrated advanced oxidation technology for the treatment of recalcitrant industrial wastewater. J. Clean. Prod., 206(1), 1025–1040.
  • 7. Buthelezi S.P., Ademola O., Olaniran, Pillay B. 2012. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates. Molecules, 17, 14260–14274.
  • 8. Farhadi A., Ameri A., Tamjidi S. 2021. Application of agricultural wastes as a low-cost adsorbent for removal of heavy metals and dyes from wastewater: a review study. Phys. Chem. Res., 9(2), 211–226.
  • 9. Firdaus M.L., Krisnanto N., Alwi W., Muhammad R., Serunting M.A. 2017. Adsorption of textile dye by activated carbon made from rice straw and oil palm midrib. Aceh Int. J.Sci.Technol., 6(1), 1–7.
  • 10. Ghaly A.E., Ananthashankar R., Alhattab M., Ramakrishnan V.V. 2014. Production, characterization and treatment of textile effluents: a critical review. J Chem. Eng. Process. Technol., 5(1), 1–18.
  • 11. Hamd A., Dryaz A.R., Shaban M., AlMohamadi H., Khulood A., Al-Ola A., Soliman N.K., Ahmed S.A. 2021. Fabrication and aApplication of zeolite/acanthophora spicifera nanoporous composite for adsorption of congo red dye from wastewater. Nanomaterials, 11(2441), 1–20.
  • 12. Hassaan M.A., Nemr A.E. 2017. Health and environmental impacts of dyes: Mini review. Am. J. Environ. Sci. Eng., 1(3), 64–67.
  • 13. Hussein F.H. 2013. Chemical properties of treated textile dyeing wastewater. Asian. J. Chem., 25(16), 9393–9400.
  • 14. Hussein, F., Abass, T. 2010. Solar Photocatalysis and Photocatalytic Treatment of Textile Industrial Wastewater. Int. J. Chem. Sci., 8, 1409–1420.
  • 15.Ilhan F., Ulucan-Altuntas K., Dogan C., Kurt U. 2019. Treatability of raw textile wastewater using Fenton process and its comparison with chemical coagulation. Desalin. Water. Treat. 162, 142–148.
  • 16. Ko D.C.K., Tsang D.H.K., Porter F.J., McKay G. 2003. Applications of multipore model for mechanism identification during the adsorption of dye on activated carbon and bagasse pith. Langmuir, 19(3), 722–730.
  • 17. Latha A., Partheeban P., Ganesan R. 2017. Treatment of textile wastewater by electrochemical method. Int. J. Earth Sci., 10(01), 146–149.
  • 18. Mirbooloki H., Amirnezhad R., Pendashteh A.R. 2017. Treatment of high saline textile wastewater by activated sludge microorganisms. J. Appl. Res. Technol., 15(2), 167–172.
  • 19.Moreno-Castilla C., Lopez-Ramon M.V., Carrasco-Marín F. 2000. Changes in surface chemistry of activated carbons by wet oxidation. Carbon, 38, 1995–2001.
  • 20. Naimabadi A., Attar H.H., Shahsavani A. 2009. Decolorization and biological degradation of azo dye reactive Red 2 by anaerobic/aerobic sequential process. Iran. J. Environ. Health. Sci. Eng., 6(2), 67–72.
  • 21. Patanjali P., Chopra I., Mandal A., Singh R. 2021. Kinetics and isotherm studies for adsorptive removal of methylene blue from aqueous solutions using organoclay. Indian J. Chem. Technol., 28, 88–93.
  • 22. Pathania D., Sharma S., Singh P. 2017. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arabian J. Chem., 10, 1445–1450.
  • 23. Patil A. D., Raut P. D. 2014. Treatment of textile wastewater by Fenton’s process as a advanced oxidation process. J. Environ. Sci. Toxicol. Food. Technol., 8 (10), 29–32.
  • 24. Patel H. 2018. Charcoal as an adsorbent for textile wastewater treatment. Sep. Sci.Technol., 53(17), 2797–2812.
  • 25. Piaskowski K., Swiderska-Dabrowska R., Zarzycki K. 2018. Dye removal from water and wastewater using various physical, chemical, and biological processes. J. AOAC Int., 101(5), 1371–1384.
  • 26. Rahman F.B.A., Akter M. 2016. Removal of dyes form textile wastewater by adsorption using shrimp shell. Int. J. Waste Resour., 6(3), 1–5.
  • 27. Rapo E., Tonk S. 2021. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules, 26(5419), 1–31.
  • 28.Rida K., Chaibeddra K., Cheraitia K. 2020. Adsorption of cationic dye methyl green from aqueous solution onto activated carbon prepared from Brachychiton Populneus fruit shell. Indian J. Chem. Technol. 27, 51–59.
  • 29.Sagadevan S., Fatimah I., Egbosiuba T. C., Alshahateet S. F., Lett J. A., Weldegebrieal G. K., Le M., Johan M. R. 2022. Photocatalytic efficiency of titanium dioxide for dyes and heavy metals removal from wastewater. Bull. Chem. React., 17(2), 430–450.
  • 30. Saleh M.A.M., Mahmoud D.K., Karim W.A.W.A., Idris A. 2011. Cationic and anionic dye adsorption by agricultural solid wastes: a comprehensive review. Desalination, 280, 1–13.
  • 31.Sastrawidana D.K., Rachmawati D.O., Sudiana K. 2018. Color removal of textile wastewater using indirect electrochemical oxidation with multi carbon electrodes. Environment Asia., 11(3), 170–181.
  • 32. Sudiana I.K., Citrawathi D.M., Sastrawidana, I.D.K., Maryam S., Sukarta I.N., Wirawan G.A.H. 2022. Biodegradation of turquoise blue textile dye by wood degrading local fungi isolated from a plantation area. J. Ecol. Eng., 23(7), 205–214.
  • 33. Sukarta I.N., Ayuni N.P.S., Sastrawidana I.D.K. 2021. Utilization of khamir (Saccharomyces cerevisiae) as adsorbent of remazol red RB textile dyes. Ecol. Eng. Environ. Technol., 22(1), 117–123.
  • 34. Tanthapanichakoon W., Ariyadejwanich P., Japthong P., Nakagawa K., Mukai S. R., Tamon H. 2005. Adsorption–desorption characteristics of phenol and reactive dyes from aqueous solution on mesoporous activated carbon prepared from waste tires. Water. Res., 39, 1347–1353.
  • 35. Upadhye V. B., Joshi S.S. 2012. Advances in wastewater treatmen: a review. Int J Chem Sci Appl., 3(2), 264–268.
  • 36. Wibawa P.J., Nur M., Asy’ari M., Nur H. 2020. SEM, XRD and FTIR analyses of both ultrasonic and heat generated activated carbon black microstructures. Heliyon, 6, e03546.
  • 37. Xia K., Liu X., Wang W., Yang X., Zhang X. 2020. Synthesis of modified starch/polyvinyl alcohol composite for treating textile wastewater. Polymers, 12(289), 1–13.
  • 38. Yaseen D. A., Scholz M. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int. J. Environ. Sci. Technol., 16, 1193–1226.
  • 39. Yusop M.F.M., Ahmad M.A., Rosli N.A., Manaf M.E.A. 2021. Adsorption of cationic methylene blue dye using microwave-assisted activated carbon derived from acacia wood: Optimization and batch studies. Arab. J. Chem., 14, 1–17.
  • 40. Zhang L., Tu L., Liang Y., Chen Q., Li Z., Li C., Wang Z., Li W. 2018. Coconut-based activated carbon fibers for efficient adsorption of various organic dyes. RSC Adv., 8, 42280–42291.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b27ee0fc-fee0-4acf-94d7-2d3fd54855a8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.