Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Silver nanoparticles (AgNPs) were generated utilizing Kecemcem (Spondias pinnata) leaf extract, and their efficacy in the photocatalysis of turquoise blue textile dye was assessed through a batch method. The produced AgNPs were characterized by identify characteristic absorption band using UV-visible spectroscopy. the functional groups using FTIR, the crystalline phase, structure, and size through XRD. The photoactive degradation of dye using AgNPs was examined under 50-watt UV irradiation at different initial pH mediums, AgNPs-to-dye volume ratios, dye concentrations, and lengths of exposure time. The AgNP creation is suggested by a color change from yellow to reddish brown and is supported by the UV-visible spectrum, which generally appears 420 nm. The functional groups contained in AgNPs were identified from FTIR analysis in the range 1066–3329 cm-1. The signal at 3329.14 cm-1 is assigned to OH stretching, while the peaks at 1631.7 cm-1 and 1386 cm-1 are compatible with C=C and C-C stretching of alkenes, as well as C-H stretching of amide bonds, confirming the presence of protein. Additionally, the signal at 1066.64 cm-1 indicates to C-O stretching of carbonyl functional group. Based on XRD data, it was confirmed that the crystalline phase of AgNPs was 54.35% with a crystal size of 22 nm, and the peaks observed at 2θ values of around 38.21°, 46.45°, 66.65°, and 77.55° showed the 111, 200, 220, and 311 planes of the cubic face-centered structure. The photocatalytic degradation efficiency of 125 mg/L turquoise blue textile dye of 94.57% was achieved at operational conditions of pH 5, the addition of 6 mL AgNPs per 100 mL dye, and irradiation with a 50-watt UV lamp for 150 mins. These results imply that silver nanoparticles prepared using bioreductants contained in Kecemcem leaf extract are very promising for treating organic contaminants found in textile wastewater.
Wydawca
Rocznik
Tom
Strony
223--244
Opis fizyczny
Bibliogr. 54 poz., rys., tab.
Twórcy
autor
- Doctoral Program of Environmental Science Student, Udayana University, Denpasar, Bali, Indonesia
autor
- Environmental Science Postgraduated Program, Udayana University, Denpasar, Bali, Indonesia
autor
- Environmental Science Postgraduated Program, Udayana University, Denpasar, Bali, Indonesia
- Biology Study Program of Mathematics and Natural Sciences Faculty, Udayana University, Jimbaran, Bali, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Pendidikan Ganesha, Singaraja 81117 Bali, Indonesia
Bibliografia
- 1. Abada, E., Mashraqi, A., Modafer, Y., Al-Abboud, M.A., & El-Shabasy, E. (2024). Review green synthesis of silver nanoparticles by using plant extracts and their antimicrobial activity. Saudi Journal of Biological Sciences, 31(1), 103877. https://doi.org/10.1016/j.sjbs.2023.103877
- 2. Ahmed, R.H., & Mustafa, D.E. (2020). Green Synthesis of Silver nanoparticles mediated by traditionally used medicinal plants in Sudan. International Nano Letters, 10, 1–14. https://doi.org/10.1007/s40089-019-00291-9
- 3. Alshehri, A.A., & Malik M.A. (2019). Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation. Materials in Electronics, 30, 16156–16173. https://doi.org/10.1007/s10854-019-01985-8
- 4. Al-Nuairi, A.G., Mosa, K.A., Mohammad, M.G., El- Keblawy, A., Soliman, S., & Alawadhi, H. (2020). Biosynthesis, characterization, and evaluation of the cytotoxic effects of biologically synthesized silver nanoparticles from cyperus conglomeratus root extracts on breast cancer cell line MCF-7. Biological Trace Element Research, 194(2), 560–569. https://doi.org/10.1007/s12011-01901791-7
- 5. Bassim, S., Mageed,A.K., AbdulRazak, A.A., & Al-Sheikh, F. (2023). Photodegradation of methylene blue with aid of green synthesis of CuO/TiO2 nanoparticles from extract of citrus aurantium juice. Bulletin of Chemical Reaction Engineering & Catalysis, 18(1), 1–16. https://doi.org/10.9767/bcrec.16417
- 6. Bopape, D.A., Ntsendwana, B., & Mabasa, F.D. (2024). Photocatalysis as a pre-discharge treatment to improve the effect of textile dyes on human health: A critical review. Heliyon, 10(20), e39316. https://doi.org/10.1016/j.heliyon.2024.e39316
- 7. Bressan, L.G., Flores, G.C.P., Biolchi, N.J., Mendes, M.E.S., Dervanoski, A., Korf, E.P., & Pasquali, G.D.L. (2024). Comparison of electrocoagulation and physicochemical coagulation/flocculation in the treatment of synthetic textile wastewater. Brazilian Journal of Environmental Sciences, v.59, e18803. https://doi.org/10.5327/Z2176-94781803
- 8. Cahyawati, P.N., Lestari, A., Subrata, T., Dewi, N.W.E.S., Wiadnyana, I.G.P. (2019). Phytochemical test on herbal drinks loloh Cemcem at Penglipuran Village, Bali. Journal of Physics: Conference Series, 1402, 055030.
- 9. Castellar-Ortega, G.C., Cely-Bautista, M.M., Cardozo-Arrieta, B.M., Jaramillo-Colpas, J.E., Moreno-Aldana, L.C., & Valencia-Ríos, J.S. (2022). Evaluation of diatomaceous earth in the removal of crystal violet dye in solution. Journal of applied research and technology, 20(4), 387–398. https://doi.org/10.22201/icat.24486736e.2022.20.4.1524
- 10. Devi, R.S., & Dhurai, B. (2023). Synthesis of silver nanoparticles using Pongamia pinnata leaf extract for efficient removal of acid brilliant red 3BN dye under solar irradiation. Desalination and Water Treatment, 315, 373–386. https://doi.org/10.5004/ dwt.2023.30149
- 11. Dhameliya, K.B., & Ambasana, C. (2023). Assessment of wastewater contaminants caused by textile industries. Journal of Pure and Applied Microbiology, 17(3), 1477–1485. https://doi.org/10.22207/JPAM.17.3.09
- 12. Elemike, E.E., Onwudiwe, D.C., & Arijeh, O. (2017). Plant-mediated biosynthesis of silver nanoparticles by leaf extracts of Lasienthra africanum and a study of the influence of kinetic parameters. Bulletin of Materials Science, 40, 129–137. https://doi.org/10.1007/s12034-017-1362-8
- 13. El-Sayed, E., El-Aziz, E.A., Othman H.A., & Hassabo A.G. (2024). Azo dyes: Synthesis, classification and utilisation in textile industry. Egyptian Journal of Chemistry, 67, 87–97. https://doi.org/10.21608/ejchem.2024.257952.9057
- 14. Ezeuko, A., Ojemayo, M.O., Okoh, O.O., & Okoh, A.I. (2022). The effectiveness of silver nanoparticles as a clean-up material for water polluted with bacteria DNA conveying antibiotics resistance genes: Effect of different molar concentrations and competing ions. OpenNano, 7, 1000060. https://doi.org/10.1016/j.onano.2022.1000060
- 15. Fajri, J.A., Nurmiyanto, A., Sa`adah, N.N., Nuryana, I.N., Anfaresi, S.L.N., & Lathifah, A.N. (2024). ––––Effectiveness of endophytes bacteria in enhancing floating treatment wetland to treat textile wastewater. Journal of Ecological Engineering, 25(3), 12–24. https://doi.org/10.12911/22998993/177593
- 16. Garciduenas-Pina, C., Tirado-Fuentes, C., Ruiz-Perez, J., Valerio-Garcia, R.C., & Morales-Domiınguez, J.F. (2023). Silver nanoparticles synthesized with extracts of leaves of Raphanus sativus L, Beta vulgaris L, and Ocimum basilicum and Its Application in seed disinfection. Nanomaterials and Nanotechnology, 2023, 874979. https://doi.org/10.1155/2023/9874979
- 17. Githala, C.K., Raj, S., Dhaka, A., Mali, S.C., & Trivedi, R. (2022). Phyto-fabrication of silver nanoparticles and their catalytic dye degradation and antifungal efficay. Frontiers in Chemistry, 10, 994721. https://doi.org/10.3389/fchem.2022.994721
- 18. Gopalakrishnan, K., Chandel, M., Gupta, V., Kaur, Kuljinder, Patel, A., Kaur, Kamaljit, Kishore A., Prabhakar, P.K., Singh, A., Shankar, Prasad, J., Bodana, V., Saxena, V., Shanmugam, V., & Sharma, A. (2023). Valorisation of fruit peel bioactive into green synthesized silver nanoparticles to modify cellulose wrapper for shelf-life extension of packaged bread. Food Research International, 164, 112321. https://doi.org/10.1016/j.foodres.2022.112321
- 19. Hemlata, Mena, P.R., Singh, A.P., & Tejavath, K.K. (2015). Biosynthesis of Silver nanoparticles using cucumis prophetarum aqueous leaf extract and their antibacterial and antiproliferative activity against cancer cell lines. ACS Omega, 5(10), 5520–5528.
- 20. Hosseini-Zori, M., & Shourijeh, Z.M. (2018). Synthesis, Characterization and investigation of photocatalytic activity of transition metal-doped TiO2 nanostructures. Progress in Color, Colorants and Coatings, 1(4), 209−220. https://doi.org/10.30509/pccc.2018.76671
- 21. Jaast, S., & Grewal, A. (2021). Green synthesis of silver nanoparticles, characterization and evaluation of their photocatalytic dye degradation activity. Current Research in Green and Sustainability Chemistry, 4, 100195. https://doi.org/10.1016/j.crgsc.2021.100195
- 22. Jain, A., Ahmad, F., Gola, D., Malik, A., Chauhan, N., Dey, P., & Tyagi, P. K. (2020). Multi dye degradation and antibacterial potential of papaya leaf derived silver nanoparticles. Environmental Nanotechnology, Monitoring and Management, 14, 100337. https://doi.org/10.1016/j.enmm.2020.100337
- 23. Karthik, L., Kumar, G., & Bhaskara Rao, K.V. (2014). Streptomyces sp. LK3 mediated synthesis of silver nanoparticles and its biomedical application. Bioprocess and Biosystems Engineering, 37, 261– 267. https://doi.org/10.1007/s00449-013-0994-3
- 24. Khan, S., Noor, T., Iqbal, N., & Yaqoob, L. (2024). Photocatalytic dye degradation from textile wastewater: A review. ACS Omega, 9(20), 21751–21767. https://doi.org/10.1021/acsomega.4c00887
- 25. Khan, S., Zahoor, M., Khan, R.S., Ikram, M., & Islam, N.U. (2023). The impact of silver nanoparticles on the growth of plants: The agriculture applications. Heliyon, 9(6), e16928. https://doi.org/10.1016/j.heliyon.2023.e16928
- 26. Komala, V.V.D.M. (2022). Qualitative, quantitative phytochemical analysis and in-vitro anti-mycobacterial evaluation of allspice. International Journal of Health Sciences, 6(S6), 2564–2581. https://doi.org/10.53730/ijhs.v6nS6.9868
- 27. Kumar, U. (2017). Performance evaluation of effluent treatment plant of SRF limited, malanpur bhind. International Journal for Research in Applied Science and Engineering Technology, 5(4), 1475–1478.
- 28. Malik, S.K., Ahmed, M., & Khan, F. (2018). Identification of novel anticancer terpenoids from Prosopis juliflora (Sw) DC (Leguminosae) pods. Tropical Journal of Pharmaceutical Research, 17(4), 661- 668. http://dx.doi.org/10.4314/tjpr.v17i4.14
- 29. Meher, A., Tandi, A., Moharana, S., Chakroborty, S., Mohapatra, S.S., Mondal, A., Dey, S., & Chandra, P. (2024). Silver nanoparticle for biomedical applications: A review. Hybrid Advances, 6, 100184. https://doi.org/10.1016/j.hybadv.2024.100184
- 30. Nazri, M.K.H.M., & Sapawe, N. (2020). A short review on photocatalytic toward dye degradation. Materialstoday Proceedings. 31(1), A42–A47. https://doi.org/10.1016/j.matpr.2020.10.967
- 31. Nouri, A., Yarak, M.T., Lajevardi, A., Rezaei, Z., Ghorbanpour, M., & Tanzifi, M. (2020). Ultrasonic-assisted green synthesis of silver nanoparticles using Mentha aquatica leaf extract for enhanced antibacterial properties and catalytic activity. Colloid and Interface Science Communications, 35, 100252. https://doi.org/10.1016/j.colcom.2020.100252
- 32. Pandey,A., & Tripathi, S. (2014). Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug, Journal of Pharmacognosy and Phytochemistry. 2(5), 115–119.
- 33. Parvathiraja, C., Shailajha, S., Shanavas, S., & Gurung, J. (2021). Biosynthesis of silver nanoparticles by Cyperus pangorei and its potential in structural, optical and catalytic dye degradation. Applied Nanoscience, 11, 477–491. https://doi.org/10.1007/s13204-020-01585-7
- 34. Parethe, G.T., Rajesh, P., Velmani, V., Balaji, M., & Kavica, S. (2024). Enhanced Photocatalytic Degradation of methylene blue dye using Co3O4 nanoparticles from the fruit extracts of diplocyclos Palmatus (L) C. Jeffrey for wastewater remediation. Journal of Water and Environmental Nanotechnology, 9(3), 356–366.
- 35. Paul, S.C., Bhowmik, S., Nath,M.R., Islam, M.D.S., Paul, S.K., Neaz, J., Monir, T.S.B., Dewanjee, S., & Salam, M.A. (2020). Silver nanoparticles synthesis in a green approach: Size dependent catalytic degradation of cationic and anionic dyes. Oriental Journal of Chemistry. 36(3), 353–360
- 36. Pingmuang, K., Chen, J., Kangwansupamonkon, W., Wallace, G.G., Phanichphant, S., & Nattestad, A. (2017). Composite photocatalysts containing BiVO4 for degradation of cationic dyes. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-09514-5
- 37. Riaz, M., Ismail, M., Ahmad, B., Zahid, Z., Jabbour, G., Khan, M.S., Mutreja, V., Sareen, S., Rafiq, A., Faheem, M., Shah, M.M., Khan, M.I., Bukhari, S.A.I., & Park, J. (2020). Characterizations and analysis of the antioxidant, antimicrobial, and dye reduction ability of green synthesized silver nanoparticles. Green Processing and Synthesis, 9, 693–705. https://doi.org/10.1515/gps-2020-0064
- 38. Saeed, M., Muneer, M., ul-Haq, A., & Akram, N. (2022). Photocatalysis: an effective tool for photodegradation of dyes: a review. Environmental Science and Pollution Research, 29, 293–311. https://doi.org/10.1007/s11356-021-16389-7
- 39. Salve, M., Mandal, A., Amreen, K., Pattnaik, P.K., & Goel, S. (2020). Greenly synthesized silver nanoparticles for supercapacitor and electrochemical sensing applications in a 3D printed microfluidic platform. Microchemical Journal, 157, 104973. https://doi.org/10.1016/j.microc.2020.104973
- 40. Singh, V., Pant, N., Sharma, R.K., Padalia, D., Rawat, P.S., Goswami, R., & Deifalla, A.M. (2023). Adsorption studies of Pb (II) and Cd (II) heavy metal ions from aqueous solutions using a magnetic biochar composite material. Separations, 10(7), 389. https://doi.org/10.3390/separations10070389
- 41. Strebel, A., Behringer, M., Hilbig, H., Machner, A., & Helmreich, B. (2024). Anionic azo dyes and their removal from textile wastewater throughadsorption by various adsorbents: a critical review. Frontiers in Environmental Engineering, 3, 1–17. https://doi.org/10.3389/fenve.2024.1347981
- 42. Sudiana, I.K., Sastrawidana, I.D.K., & Sukarta, I.N. (2022). Adsorption kinetic and isotherm studies of reactive red B textile dye removal using activated coconut leaf stalk. Ecological Engineering & Environmental Technology, 23(5), 61-71. https://doi.org/10.12912/27197050/151628
- 43. Sudiana, I.K., Citrawathi, D.M., Sastrawidana, I.D.K., Maryam, S., Sukarta, I.N., & Wirawan, G.A.H. (2022). Biodegradation of turquoise blue textile dye by wood degrading local fungi Isolated from plantation area. Journal of Ecological Engineering, 23(7), 205–214. https://doi.org/10.12911/22998993/150044
- 44. Sujarwo, W., Keim, A.P., Savo V., Guarrera, P.M., & Caneva G. (2015). Ethnobotanical study of Loloh: Traditional herbal drinks from Bali (Indonesia). Journal of Ethnopharmacol, 1(169), 34–48. https://doi.org/10.1016/j.jep.2015.03.079
- 45. Sukarta, I.N., & Sastrawidana, I.D.K (2024). Synthesis and characterization of hydroxyapatite/ titania composite and its application on photocatalytic degradation of remazol red B textile dye under UV irradiation. Ecological Engineering and Environmental Technology. 25(2), 178–189. https://doi.org/10.12912/27197050/176230
- 46. Sukarta, I.N., Ayuni, N.P.S., & Sastrawidana, I.D.K. (2021). Utilization of khamir (Saccharomyces cerevisiae) as adsorbent of remazol red RB textile dyes. Ecological Engineering & Environmental Technology. 22(1), 117–123. https://doi.org/10.12912/27197050/132087
- 47. Tabish, M., Tabinda, A.B., Mazhar, Z., Yasar, A., Ansar, J., & Wasif, I. (2024). Physical, chemical and biological treatment of textile wastewater for removal of dyes and heavy metals. Desalination and Water Treatment, 320, 100842 https://doi.org/10.1016/j.dwt.2024.100842
- 48. Trieu, Q.A., Le, C.T.B., Pham, C.M., & Huu, T. (2023). Photocatalytic degradation of methylene blue and antibacterial activity of silver nanoparticles synthesized from Camellia sinensis leaf extract. Journal of Experimental Nanoscience, 18(1), 2225759. https://doi.org/10.1080/17458080.2023.2225759
- 49. Varadavenkatesan, T., Nagendran, V., Vimayagam, R., Goveas, L.C., & Selvaraj, R. (2024). Effective degradation of dyes using silver nanoparticles synthesized from Thunbergia grandiflora leaf extract. Bioresource Technology Reports, 27, 101914. https://doi.org/10.1016/j.biteb.2024.101914
- 50. Velusamy, P., Das J., Pachaiappan, R., Vaseeharan, B., & Pandian, K. (2015). Greener approach for synthesis of antibacterial silver nanoparticles using aqueous solution of neem gum (Azadirachta indica L.). Industrial Crops and Products, 66, 103–109. https://doi.org/10.1016/j.indcrop.2014.12.042
- 51. Verma, A., & Mehata, M.S. (2016). Controllable synthesis of silver nanoparticles using neem leaves and their antimicrobial activity. Journal of Radiation Research and Applied Sciences, 9(1), 109–115. https://doi.org/10.1016/j.jrras.2015.11.001
- 52. Wang, L., Liu, S., Li, J., & Li S. (2022). Effects of several organic fertilizers on heavy metal passivation in Cd-contaminated gray-purple soil. Frontiers in Environmental Science, 10, 895646. https://doi.org/10.3389/fenvs.2022.895646
- 53. Xu, L., Wang, Y.Y., Huang, J., Chen, C.Y., Wang, Z.X., & Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 10(20), 8996–9031. https://doi.org/10.7150/thno.45413
- 54. Zayed, M.A., Abo-Ayad, Z.A., & Medany, S.S. (2021). Catalytic efficient electro-oxidation degradation of DO26 textile dye via UV/VIS, COD, and GC/MS evaluation of byproducts. Electrocatalysis, 12(6), 731–746. https://doi.org/10.1007/s12678-021-00683-6
- atalytic degradation of turquoise blue textile dye using silver nanoparticles prepared from aqueous Kecemcem (Spondias pinnata) leaf extract
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b27e3274-561d-4813-995b-d2ed24ce991e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.