PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of human circle of Willis with and without aneurisms

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: This paper includes results of the first stage of research aimed at the development of recommendations for physicians in order to help them to choose a particular type of cerebral arteries aneurysms treatment. Methods: Recent studies show that the majority of aneurysms develop as a result of hemodynamic and degenerative lesions of the vascular wall. Obviously, such wall damage can be studied using the methods of continuum mechanics and numerical simulations. Biomechanical modelling allows us to study hemodynamic parameters and stress-strain state of these arteries in health and disease, and to formulate practical recommendations for the necessity and reasonable selection of a particular type of cerebral arteries aneurysm treatment. Results: At this stage the realistic geometric models of arterial circle of Willis were built for its normal state and in the presence of aneurysms. The ultrasound analysis of circle of Willis was conducted in order to obtain blood flow parameters and the boundary conditions for carotid and vertebral arteries. Also, the mechanical properties of these arteries were investigated and constants of the Mooney–Rivlin strain energy function were obtained. Conclusions: Thus, the boundary problem describing the behaviour of human Willis circle arteries was stated. Further, this problem will be solved numerically using the finite element method. The numerical results will be analyzed from the point of view of the influence of the mechanical factors on the emergence, growth and rupture of circle of Willis aneurysms.
Rocznik
Strony
121--129
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
autor
  • Mathematical Modeling Subdepartment, Educational-Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russian Federation
autor
  • Mathematical Modeling Subdepartment, Educational-Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russian Federation
autor
  • Biomechanics Subdepartment, Educational-Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russian Federation
  • Biomechanics Subdepartment, Educational-Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russian Federation
Bibliografia
  • [1] AURICCHIO F., CONTI M., DE BEULE M., DE SANTIS G., VERHEGGHE B., Carotid artery stenting simulation: from patient-specific images to finite element analysis, Med. Eng. Phys., 2011, 33(3), 281–291.
  • [2] BALOSSINO R., PENNATI G., MIGLIAVACCA F., FORMAGGIA L., VENEZIANI A., TUVERI M., DUBINi G., Computational models to predict stenosis growth in carotid arteries: which is the role of boundary conditions? Comput. Methods Biomech. Biomed. Engin., 2009, 12(1),113–123.
  • [3] BLAGOJEVIĆ M., NIKOLIĆ A., ZIVKOVIĆ M., ZIVKOVIĆ M., STANKOVIĆ G., Influence of blocks’ topologies on endothelial shear stress observed in CFD analysis of artery bifurcation, Acta Bioeng. Biomech., 2013, 15(1), 97–104.
  • [4] CHING-CHENG CHUANG, YU-TZU LEE, CHUNG-MING CHEN, YAO-SHENG HSIEH, TSAN-CHI LIU, CHIA-WEI SUN, Patientoriented simulation based on Monte Carlo algorithm by using MRI data, Biomed. Eng. Online, 2012, 11(21), DOI: 10.1186/1475-925X-11-21.
  • [5] DEMPERE-MARCO L., OUBEL E., CASTRO M., PUTMAN C., FRANGI A., CEBRAL J., CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms, Med. Image Comput. Comput. Assist. Interv., 2006, 9(Pt 2), 438–445.
  • [6] GRINBERG L., CHEEVER E., ANOR T., MADSEN J.R., KARNIADAKIS G.E., Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study, Ann. Biomed. Eng., 2011, 39(1), 297–309.
  • [7] HO H., COOLING M.T., HUNTER P., Towards a Multiscale Integrative Model of WSS-Induced Signaling Pathways in Cerebral Aneurysms, IFMBE Proceedings, 2010, 31, 1159–1162.
  • [8] IVANOV D.V., FOMKINA O.A., The mechanical properties of arteries of Willis polygon, Russian Journal of Biomechanics, 2008, 12(4), 75–84.
  • [9] JOU L.D., MAWAD M.E., Timing and size of flow impingement in a giant intracranial aneurysm at the internal carotid artery, Med. Biol. Eng. Comput., 2011, 49(8), 891–899.
  • [10] KIM C.S., KIRIS C., KWAK D., DAVID T., Numerical simulation of local blood flow in the carotid and cerebral arteries under altered gravity, J. Biomech. Eng., 2006, 128(2), 194–202.
  • [11] LIANG F., FUKASAKU K., LIU H., TAKAGI S., A computational model study of the influence of the anatomy of the circle of willis on cerebral hyperperfusion following carotid artery surgery, Biomed. Eng. Online, 2011, 10(84), DOI: 10.1186/1475-925X-10-84.
  • [12] LIU H., YAMAGUCHI T., Waveform dependence of pulsatile flow in a stenosed channel, J. Biomech. Eng., 2001, 123(1), 88–96.
  • [13] MARZO A., SINGH P., REYMOND P., STERGIOPULOS N., PATEL U., HOSE R., Influence of inlet boundary conditions on the local haemodynamics of intracranial aneurysms, Comput. Methods Biomech. Biomed. Engin., 2009, 12(4), 431–444.
  • [14] OUBEL E., DE CRAENE M., PUTMAN C.M., CEBRAL J.R., FRANGI A.F., Analysis of intracranial aneurysm wall motion and its effects on hemodynamic patterns, Proc SPIE, 2007, DOI: 10.1117/12.708937.
  • [15] SHOJIMA M., OSHIMA M., TAKAGI K., TORII R., HAYAKAWA M., KATADA K., MORITA A., KIRINO T., Magnitude and Role of Wall Shear Stress on Cerebral Aneurysm. Computational Fluid Dynamic Study of 20 Middle Cerebral Artery Aneurysms, Stroke, 2004, 35, 2500–2505.
  • [16] TORII R., MARIE OSHIMA M., KOBAYASHI T., TAKAGI K., TEZDUYAR T.E., Fluid–structure Interaction Modeling of Aneurysmal Conditions with High and Normal Blood Pressures, Computational Mechanics, 2006, 38(4–5), 482–490.
  • [17] TORII R., OSHIMA M., An integrated geometric modelling framework for patient-specific computational haemodynamic study on wide-ranged vascular network, Comput. Methods Biomech. Biomed. Engin., 2012, 15(6), 615–625.
  • [18] TORII R., OSHIMA M., KOBAYASHI T., TAKAGI K., TEZDUYAR T.E., Fluid–structure interaction modeling of blood flow and cerebral aneurysm: Significance of artery and aneurysm shapes, Comput. Methods Appl. Mech. Engrg., 2008, 198, 3613–3621.
  • [19] TOTH B., RAFFAI G., BOJTAR I., Analysis of the mechanical parameters of human brain aneurysm, Acta Bioeng. Biomech., 2005, 7(1), 3–22.
  • [20] TRACHET B., RENARD M., DE SANTIS G., STAELENS S., DE BACKER J., ANTIGA L., LOEYS B., SEGERS P., An integrated framework to quantitatively link mouse-specific hemodynamics to aneurysm formation in angiotensin II-infused ApoE -/- mice, Ann. Biomed. Eng., 2011, 39(9), 2430–2444.
  • [21] VALEN-SENDSTAD K., MARDAL K.A., STEINMAN D.A., Highresolution CFD detects high-frequency velocity fluctuations in bifurcation, but not sidewall, aneurysms, J. Biomech., 2013, 18, 46(2), 402–407.
  • [22] WANG X.H., LI X.Y., ZHANG X.J., A Computational Study on Biomechanical Differences between Cerebral Aneurysm and Normal Cerebral Artery Employing Fluid-Structure Interaction Analysis, IFMBE Proceedings, 2010, 31, 1503–1506.
  • [23] WATTON P.N., RABERGER N.B., HOLZAPFEL G.A., VENTIKOS Y., Coupling the hemodynamic environment to the evolution of cerebral aneurysms: computational framework and numerical examples, J. Biomech. Eng., 2009, 131(10), 101003, DOI: 10.1115/1.3192141.
  • [24] WATTON P.N., SELIMOVIC A., RABERGER N.B., HUANG P., HOLZAPFEL G.A., VENTIKOS Y., Modeling evolution and the evolving mechanical environment of saccular cerebral aneurysms, Biomech. Model Mechanobiol., 2011, 10, 109–132.
  • [25] WENYU FU, AIKE QIAO, Fluid Structure Interaction of Patient Specific Internal Carotid Aneurysms: A Comparison with Solid Stress Models, IFMBE Proceedings, 2010, 31, 422–425.
  • [26] XENOS M., RAMBHIA S.H., ALEMU Y., EINAV S., LABROPOULOS N., TASSIOPOULOS A., RICOTTA J.J., BLUESTEIN D., Patient-based abdominal aortic aneurysm rupture risk prediction with fluid structure interaction modeling, Ann. Biomed. Eng., 2010, 38(11), 3323–3337.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b27dfc3d-f108-457c-a320-42104a22acde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.