PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reaction of ampicillin and amoxicillin with alcohols

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
HPLC/ESI-MS analyses of alcohol solutions of ampicillin and amoxicillin have shown that the two drugs react very readily with alcohols (methanol and ethanol) at room temperatures, without the presence of any catalyst. Products of methanolysis were detected even when methanol was used as a mobile phase, in HPLC/ESI-MS analysis of a water solution of ampicillin and amoxicillin. Therefore, neither methanol nor other alcohols should be used when working with these compounds.
Twórcy
autor
  • Institute of Chemistry, Poznań University of Technology Piotrowo 3, 60-965 Poznań, Poland
Bibliografia
  • [1] Tamilselvi A., Mugesh G., 2008. Zinc and antibiotic resistance: metallo-β-lactamases and their synthetic analogues. J. Biol. Inorg. Chem. 13, 1039-1053.
  • [2] Chilov G.G., Švedas V.K., 2002. Enzymatic hydrolysis of β-lactam antibiotics at low pH in a two-phase “aqueous solution–water-immiscible organic solvent” system. Can. J. Chem. 80, 699-707.
  • [3] Zhang H.M., Hao Q., 2011. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J. 25, 2574-2582.
  • [4] Puckett L.G., Lewis J.C., Bachas L.G., Daunert S., 2002. Development of an assay for β-lactam hydrolysis using the pH-dependence of enhanced green fluorescent protein. Anal. Biochem. 309, 224-231.
  • [5] Lefevre S., Debat H., Thomas D., Friboulet A., Avalle B., Friboulet, Avalle B., 2001. A suicide-substrate mechanism for hydrolysis of β-lactams by an antiidiotypic catalytic antibody. FEBS Lett. 489, 25-28.
  • [6] Urbain J.L., Wittich C.M., Campion S.R., 1998. In vitro measurement of β-lactamase-catalyzed ampicillin hydrolysis by recombinant Escherichia coli extracts using quantitative high-performance liquid chromatography. Anal. Biochem. 260, 160-165.
  • [7] Deshpande A.D., Baheti K.G., Chatterjee N.R., 2004. Degradation of β-lactam antibiotics. Curr. Sci. 87, 1684-1695.
  • [8] Krauss M., Gresh N., Antony J., 2003. Binding and hydrolysis of ampicillin in the active site of a zinc lactamase. J. Phys. Chem. B 107, 1215-1229.
  • [9] Lopez R., Menendez M.I., Diaz N., Suarez D., Campomanes P., Ardura D., Sordo T.L., 2006. Theoretical studies on the ring opening of β-lactams: Processes in solution and in enzymatic media. Curr. Org. Chem. 10, 805-821.
  • [10] Kaminskaia N.V., Spingler B., Lippard S.J., 2000. Hydrolysis of β-lactam antibiotics catalyzed by dinuclear zinc(II) complexes: functional mimics of metallo-β-lactamases. J. Am. Chem. Soc. 122, 6411-6422.
  • [11] Bauer-Siebenlist B., Dechert S., Meyer F., 2005. Biomimetic hydrolysis of penicillin G catalyzed by dinuclear zinc(II) complexes: structure–activity correlations in β-lactamase model systems. Chem. Eur. J. 11, 5343-5352.
  • [12] Fernández-González A., Badía R., Díaz-García M.E., 2003. Micelle-mediated spectrofluorimetric determination of ampicillin based on metal ion-catalysed hydrolysis. Anal. Chim. Acta 484, 223-231.
  • [13] Grover M., Gulati M., Singh B., Singh S., 2000. Correlation of penicillin structure with rate constants for basic hydrolysis. Pharm. Pharmac. Commun. 6, 355-363.
  • [14] Qureshi S.Z., Qayoom T., Helalet M.I., 1999. Simultaneous spectrophotometric and volumetric determinations of amoxycillin, ampicillin and cloxacillin in drug formulations: reaction mechanism in the base catalysed hydrolysis followed by oxidation with iodate in dilute acid solution. J. Pharm. Biomed. Anal. 21, 473-482.
  • [15] Montoya-Pelaez P.J., Brown R.S., 2002. Methanolysis of nitrocefin catalyzed by one and two Zn2+ ions. A simplified model for class B β-lactamases. Inorg. Chem. 41, 309-316.
  • [16] Martínez J.H., Navarro P.G., Garcia A.A.M., de las Parras P.J.M., 1999. β-Lactam degradation catalysed by Cd2+ ion in methanol. Int. J. Biol. Macromolec. 25, 337--343.
  • [17] Navarro P.G., El Bekkouri A., Reinoso E.R., 1999. Fluorescence accompanying methanolysis of β-lactam antibiotics. Biomed. Chromatogr. 13, 105-107.
  • [18] Navarro P.G., Blázquez I.H., Osso B.Q., de las Parras P.J.M., Puentedur M.I.M., García A.A.M., 2003. Penicillin degradation catalysed by Zn(II) ions in methanol. Int. J. Biol. Macromolec. 33, 159-166.
  • [19] Navarro P.G., El Bekkouri A., Reinoso E.R., 1998. Spectrofluorimetric study of the degradation of α-amino β-lactam antibiotics catalysed by metal ions in methanol. Analyst 123, 2263-2266.
  • [20] García A.M., Navarro P.G., de las Parras P.J.M., 1998. Degradation of ampicillin in the presence of cadmium (II) ions. Talanta 46, 101-109.
  • [21] Page M.I., Vilanova B., Layland N.J., 1995. pH Dependence of and kinetic solvent isotope effects on the methanolysis and hydrolysis of β-lactams catalyzed by class C β-lactamase. J. Am. Chem. Soc. 117, 12092-12095.
  • [22] Wyrwas B., Frańska M., 2011. Comment on “Deactivation and transformation products in biodegradability testing of ß-lactams amoxicillin and piperacillin” by Längin et al., 2009. Chemosphere 75(3), 347-354]. Chemosphere 84, 187-188.
  • [23] Längin A., Alexy R., König A., Kümmerer K., 2009. Deactivation and transformation products in biodegradability testing of β-lactams amoxicillin and piperacillin. Chemosphere 75, 347-354.
  • [24] Frańska M., 2010. Comment on the paper “Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles.” Ghauch et al. (2009) Environmental Pollution 157, 1626-1635. Environ. Pollut. 158, 3028-3029.
  • [25] Ghauch A., Tuqan A., Assi H.A., 2009. Antibiotic removal from water: Elimination of amoxicillin and ampicillin by microscale and nanoscale iron particles. Environ. Pollut. 157, 1626-1635.
  • [26] Agboke A.A., Esimone C.O., 2011. Antimicrobial evaluation of the interaction between methanol extract of the lichen, Ramalina Farinacea (Ramalinacea) and ampicillin against clinical isolates of Staphylococcus Aureus. J. Med. Plants Res. 5, 644-648.
  • [27] Zhu H., Grant D.J.W., 1996. Influence of water activity in organic solvent + water mixtures on the nature of the crystallizing drug phase. 2. Ampicillin. Int. J. Pharm. 139, 33-43.
  • [28] Feng S., Shan N., Carpenter K.J., 2006. Crystallization of amoxicillin trihydrate in the presence of degradation products. Org. Proc. Res. Devel. 10, 1212-1218.
  • [29] Pérez-Lozano P., García-Montoya E., Orriols A., Miñarro M., Ticó J.R., Suñé-Negre J.M., 2006. Stability evaluation of amoxicillin in a solid premix veterinary formulation by monitoring the degradation products through a new HPLC analytical method. J. Pharm. Biomed. Anal. 42, 192-199.
  • [30] Vahdat L., Sunderland V.B., 2007. Kinetics of amoxicillin and clavulanate degradation alone and in combination in aqueous solution under frozen conditions. Int. J. Pharm. 342, 95-104.
  • [31] Martins A.F., Mayer F., Confortin E.C., C. da S. Frank, 2009. A study of photocatalytic processes involving the degradation of the organic load and amoxicillin in hospital wastewater. Clean 237, 365-371.
  • [32] Xu H., Cooper W.J., Jung J., Song W., 2011. Photosensitized degradation of amoxicillin in natural organic matter isolate solutions. Water Res. 45, 632-638.
  • [33] Aki H., Niiya T., Iwase Y., Goto M., Kimura T., 2004. Mechanism for the inhibition of the acid degradation of ampicillin by 2-hydroxypropyl-β-cyclodextrin. J. Therm. Anal. Cal. 77, 423-435.
  • [34] Zhou D., Liu Z., Zhang D., Xu Y., Tan W., Ma L., Sun Y., Shen B., Zhu C., 2013. Chymotrypsin both directly modulates bacterial growth and asserts ampicillin degradation-mediated protective effect on bacteria. Ann. Microbiol. 63, 623-631.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b279bc68-8501-4fc9-82c6-f2b8bb66bb07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.