PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Slurry shield tunneling in soft ground. Comparison between field data and 3D numerical simulation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In urban areas, the control of ground surface settlement is an important issue during shield tunnel-boring machine (TBM) tunneling. These ground movements are affected by many machine control parameters. In this article, a finite difference (FD) model is developed using Itasca FLAC-3D to numerically simulate the whole process of shield TBM tunneling. The model simulates important components of the mechanized excavation process including slurry pressure on the excavation face, shield conicity, installation of segmental lining, grout injection in the annular void, and grout consolidation. The analysis results from the proposed method are compared and discussed in terms of ground movements (both vertical and horizontal) with field measurements data. The results reveal that the proposed 3D simulation is sufficient and can reasonably reproduce all the operations achieved by the TBM. In fact, the results show that the TBM parameters can be controlled to have acceptable levels of surface settlement. In particular, it seems that moderate face pressure can reduce ground movement significantly and, most importantly, can prevent the occurrence of face-expected instability when the shield crosses very weak soil layers. The shield conicity has also an important effect on ground surface settlement, which can be partly compensated by the grout pressure during tail grouting. Finally, the injection pressure at the rear of the shield significantly reduces the vertical displacements at the crown of the tunnel and, therefore, reduces the settlement at the ground surface.
Wydawca
Rocznik
Strony
115--128
Opis fizyczny
Bibliogr. 23 poz., tab., rys.
Twórcy
  • Laboratory of Research in Applied Hydraulics (LRHYA), Department of Civil Engineering, University of Batna 2-Mostepha Benboulaid, Algeria
autor
  • Laboratory of Research in Applied Hydraulics (LRHYA), Department of Civil Engineering, University of Batna 2-Mostepha Benboulaid, Algeria
Bibliografia
  • [1] Benmebarek, S., Kastner, R. & Ollier, C. (1998). Auscultation et modélisation numérique du processus de creusement à l’aide d’un tunnelier. Geotechnique 48 (6), 801–818. (in french).
  • [2] Chakeri H., Ozcelik, Y. & Unver B. (2013). Effects of important factors on surface settlement prediction for metro tunnel excavated by EPB. Tunnelling and Underground Space Technology, 36, 2013, pp. 14-23.
  • [3] Demagh, R., Emeriault, F. & Hammoud, F. (2013). 3D modelling of tunnel excavation using pressurized tunnel boring machine in overconsolidated soils. Studia Geotechnica et Mechanica, Vol 35, No. 2
  • [4] Dias, D., Kastner, R. & Maghazi, M. (2000). 3D simulation of slurry shield tunnelling. Proceedings of International Symposium on Geotechnical aspects of underground construction in soft ground, Kusakabe, Balkema, Rotterdam, 351-356.
  • [5] Dias, D. and Kastner, R. (2013). Movements caused by the excavation of tunnels using face pressurized shields — Analysis of monitoring and numerical modeling results. Engineering Geology, Vol. 152, pp. 17–25.
  • [6] Do, NA., Dias, D. Oreste, P. & Djeran-Maigre, I. (2014). Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunnell Underground Space Technol 2014; 42:40–51.
  • [7] Flac3D, Fast Lagrangian Analysis of Continua in Three Dimensions. Itasca Consulting Group Inc., 2000, Mineapolis.
  • [8] Graziani, A., Ribacchi, R. & Capata, A. (2007). 3D modelling of TBM excavation in squeezing rock masses. In: Brennerr Basistunnel Und Zulaufstrecken, Internationales Symposium BBT. Innsbruck University Press, Innsbruck, pp. 143–151.
  • [9] Guglielmetti, V., Grasso, P., Mahtab, A. & Xu, S. (2008). Mechanized Tunnelling in Urban Areas. Taylor & Francis Group, London, UK, pp. 212–215.
  • [10] Kasper, T. and Meschke, G. (2006). On the influence of face pressure, grouting pressure and TBM design in soft ground tunnelling. Tunnelling and Underground Space Technology, 21: 160-171.
  • [11] Kastner, R., Ollier, C. & Guibert, G. (1996). In situ monitoring of the Lyons Metro D line extension. Geotechnical Aspects of Underground Construction in Soft Ground, Mair & Tay/or (eds). 1996 Ba/kema, Rotterdam. ISBN 90 5410 856 8.
  • [12] Katebi, H., Rezaei, A.H., Hajialilue-Bonab, M. & Tarifard, A. (2015). Assessment the influence of ground stratification, tunnel and surface buildings specifications on shield tunnel lining loads (by FEM). Tunnelling and Underground Space Technology, 49:67-78
  • [13] Li, Z., Grasmick, J. & Mooney, M. (2015). Influence of slurry TBM parameters on ground deformation. In: ITA WTC 2015 Congress and 41st General Assembly 22-28 May, 2015, Lacroma Valamar Congress Center, Dubrovnik, Croitia.
  • [14] Lueprasert, P., Jonpradist, P. & Suwansawat, S. (2017). Tunneling simulation in soft ground using shell elements and grouting layer. International Journal of GEOMATE, 12(31):51-57
  • [15] Maidl, B., Herrenknecht, M., Maidl, U. & Wehrmeyer, G. (2012). Mechanised shield tunnelling. Berlin: Ernst W. & Sohn Verlag.
  • [16] Mollon, G., Dias, D. & Soubra, A. H. (2013). Probabilistic analyses of tunnelling-induced ground movements. Acta Geotechnica. http: //dx.doi.org/10.1007/s11440-012- 0182-7.
  • [17] Ollier, C. (1997). Etude expérimentale de l’interaction sol-machine lors du creusement d’un tunnel peu profond par un tunnelier à pression de boue. Thèse de Doctorat, INSA de Lyon, ISAL 0096.
  • [18] Panet, M. (1988). Calcul de soutènement des tunnels à section circulaire par la méthode convergence-confinement. Tunnels et Ouvrages Souterrains 77, 228–232.
  • [19] Qiao, Y., Zhao, T. & Ding, W. (2018). Simulating synchronous grouting in shield tunnels with the consideration of evolution of grouting pressure. In In book: Proceedings of GeoShanghai 2018 International Conference: Tunnelling and Underground Construction, pp. 23-31, 2018.
  • [20] Wang, F., Gou, B. & Qin, Y. (2013). Modeling tunneling-induced ground surface settlement development using a wavelet smooth relevance vector machine. Computers and Geotechnics, 54(0), 125-132.
  • [21] Xie, X., Yang, Y. & Ji, M. (2016). Analysis of surface settlement induced by the construction of a large-diameter shield-driven tunnel in Shanghai, China. Tunnelling and Underground Space Technology, 51:120-132
  • [22] Zhang, Z., Zhang, M., Jiang, Y., Bai, Q. & Zhao, Q. (2017). Analytical prediction for ground movements and liner internal forces induced by shallow tunnels considering non-uniform convergence pattern and ground-liner interaction mechanism. Soils and Foundations. 57: 211-226.
  • [23] Zhao, K., Janutolo, M. & Barla, G. (2012). A completely 3D model for the simulation of mechanized tunnel excavation. Rock Mech. Rock Eng. 45, 475–497.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b277d821-b8d7-4309-bd11-1f0120ed3b84
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.