PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Impact of Extrusion on the Biogas and Biomethane Yield of Plant Substrates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the present work was to determine the effect of pretreatment by extrusion on the biogas and biomethane yield of lignocellulosic substrates such as maize silage and maize straw silage. The biogas yields of the substrates before and after treatment were compared. Moreover, energy efficiency of pretreatment by extrusion was analyzed in order to assess the applicability of the process in an agricultural biogas plant. Extrusion tests were carried out in a short single-screw extruder KZM-2 in which the length-to-diameter ratio of the screw was 6:1 and rotational speed was 200 rpm. The biogas yield tests of the plant substrates after extrusion were carried out in a laboratory scale, using 15 biofermenters operated in a periodic manner, at a constant temperature of 39°C (mesophilic digestion) and controlled pH conditions. The gas-emission analysis was performed using a certified gas analyzer from Geotech GA5000. Pretreatment by extrusion was observed to improve the quantity of methane generated: in terms of fresh matter for maize silage subjected to extrusion, the methane yield was 16.48% higher than that of the non-extruded silage. On the other hand, maize straw silage after extrusion gave 35.30% more methane than did the same, non-extruded, material. Differences in yields relative to dry organic matter are also described in this paper. Taking into account the amount of energy that is spent on pretreatment and the generated amount of methane, the energy balance for the process gives an idea of the economics of the operation. For maize silage, energy efficiency was lower by 13.21% (-553.2 kWh/Mg), in contrast to maize straw silage, where the increase in energy was 33.49% (678.4 kWh/Mg). The obtained results indicate that more studies on the pretreatment and digestion of maize silage are required in order to improve the efficiency of its use for making biogas. To fully utilize its potential, it is necessary to know thoroughly the effect of the extrusion process and of biogas production on energy efficiency at different conditions.
Rocznik
Strony
264--272
Opis fizyczny
Bibliogr. 19 poz., tab., rys.
Twórcy
autor
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
  • Institute of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
autor
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
autor
  • Institute of Biosystems Engineering, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
  • Department of Production Organization and Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 164, 02-787 Warszawa, Poland
autor
  • Department of Production Organization and Engineering, Warsaw University of Life Sciences – SGGW, Nowoursynowska 164, 02-787 Warszawa, Poland
autor
  • Institute of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
  • Institute of Food Technology of Plant Origin, Poznan University of Life Sciences, Wojska Polskiego 28, 60-637 Poznań, Poland
Bibliografia
  • 1. Camire M.E. 1998. Chemical changes during extrusion cooking: recent advances. In: Shahidi F., Ho C.T., Chuyen N. (Eds.), Process-induced chemical changes in food. Plenum Press, New York, 109–121.
  • 2. Carvalheiro F., Duarte L.C., Gírio F.M. 2008. Hemicellulose biorefineries: a review on biomass pretreatments. J. Sci. Ind. Res., 67, 849–864.
  • 3. Karunanithy C. and Muthukumarappan K. 2010. Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios. Appl. Biochem. Biotechnol., 162, 264–279.
  • 4. Menardo S., Cacciatorea V., Balsaria P. 2015. Batch and continuous biogas production arising from feed varying in rice straw volumes following pre-treatment with extrusion, Bioresour. Technol., 180, 154–161.
  • 5. Norm DIN 38 414-S8, 1985. Characterisation of the substrate, sampling, collection of material data, fermentation tests, Deutsches Institut für Normung, Berlin.
  • 6. Norm VDI 4630, 2006. Vergärung organischer Stoffe Substratcharakterisierung, Probenahme, Stoffdatenerhebung, Gärversuche (in German). Fermentation of organic materials characterization of the substrate, sampling, collection of material data, fermentation tests (in English). Düsseldorf: Verein Deutscher Ingenieure – German Engineers Club.
  • 7. Uellendahl H., Wang G., Mřller H.B., Jřrgensen U., Skiadas V., Gavala H.M., Ahring B.K. 1998. Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci. Technol., 58, 1841–1847.
  • 8. Panepinto D., Genon G. 2016. Analysis of the extrusion as a pretreatment for the anaerobic digestion process. Ind. Crops Prod., 83, 206–212.
  • 9. Parkin G.F. and Owen W.F. 1986. Fundamentals of anaerobic digestion of wastewater sludges, J. Environ. Eng., 112, 867–920.
  • 10. Pérez J., Muñoz-Dorado J., Rubia T.,Ć J. Martínez J. 2002. Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int. Microbiol., 5, 53–63.
  • 11. Pęksa A. 2011. Ekstruzja jako metoda produkcji wyrobów ekspandowanych. Uniwersytet Przyrodniczy, Wrocław.
  • 12. Pilarska A., Pilarski K., Witaszek K., Dukiewicz H., Dobrzański K., 2015. Wstępne badania wpływu obróbki termicznej kiszonki z kukurydzy na wydajność biogazową. Nauka Przyr. Technol., 9(2), pp. 18.
  • 13. Pilarska A.A., Pilarski K., Witaszek K., Waliszewska H., Zborowska M., Waliszewska B., Kolasiński M., Szwarc-Rzepka K. 2016. Treatment of dairy waste by anaerobic digestion with sewage sludge. Ecol. Chem. Eng. S, 23(1), 99–115.
  • 14. Stolarski M., J., Krzyżaniak M., Waliszewska B., Szczukowski S., Tworkowski J., Zborowska M. 2013. Lignocellulosic biomass derived from agricultural land as industrial and energy feedstock. Drewno. Pr. Nauk. Donies. Komunik., 56, 5–23.
  • 15. Witaszek K., Krysztofiak A., Pilarski K., Pilarska A.A. 2015. Przegląd metod obróbki wstępnej substratów biogazowych. Techn. Roln. Ogrod. Leśna, 6, 5–7.
  • 16. Witaszek K., Pilarska A., Pilarski K. 2015. Wybrane metody wstępnej obróbki surowców roślinnych stosowanych do produkcji biogazu. Ekonomia i Środ., 2(53), 130–144.
  • 17. Yang L., Xu F., Ge X., Li Y. 2015. Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew. Sustain. Energy Rev., 44, 824–834.
  • 18. Yitbarek M.B., Tamir B. 2014. Silage additives: review. Open J. Appl. Sci., 4, 258–274.
  • 19. Zheng Y., Zhao J., Xu F., Li. Y. 2014. Pretreatment of lignocellulosic biomass for enhanced biogas production. Prog. in Energy Comb. Sci., 42, 35–53.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b276a1fc-152f-4891-95fc-7686201c97c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.