PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Assessment of the crushing strength of concrete rings reinforced with synthetic fibers

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wytrzymałość na zgniatanie prefabrykowanych kręgów wykonanych z betonu zbrojnego włóknami syntetycznymi
Języki publikacji
EN
Abstrakty
EN
Since the 1990s, the technology of fiber-reinforced concrete has undergone significant development, initiated by the publication of the comprehensive ACI 544 committee report. Standardized methods for measuring the key mechanical properties of fiber-reinforced concrete are outlined in EN 14651 and ASTM C1609, while material properties are specified in CEN/TS 19101. It is widely known that the addition of fibers improves the properties of concrete; however, their effectiveness depends on various factors such as material type (metallic and non-metallic fibers), shape (crimped and fibrillated fibers), dimensions (length, diameter and slenderness), fiber volume in the concrete mix, and even the consistency of the mix. The aim of the experimental studies was to assess the load-bearing capacity of concrete produced under industrial conditions, modified with various synthetic fibers at different dosages. The primary selection criterion for the fibers was to meet the residual strength requirements of the tested element with the lowest possible weight fraction of dispersed reinforcement. In addition to determining the residual strength of PFRC, the study also measured compressive strength, flexural tensile strength, and the modulus of elasticity. The obtained results and force-crack width relationships were used to validate the numerical model of a standard notched beam. This calibrated material model was then used to develop a finite element model (FEM) and to conduct a preliminary assessment of the load-bearing capacity of prefabricated FRC rings using the ATENA software.
PL
Od lat 90. XX wieku technologia betonu zbrojonego włóknami przeszła znaczący rozwój, który został zapoczątkowany przez publikację kompleksowego raportu komitetu ACI 544. Znormalizowano sposoby pomiarów kluczowych właściwości mechanicznych fibrobetonu w EN 14651 i ASTM C1609 oraz materiałowych w CEN/TS 19101. Powszechnie wiadomo, że dodatek włókien poprawia właściwości betonu, jednak skuteczność ich zależy od wielu czynników takich jak: rodzaj materiału (włókna metaliczne i niemetaliczne), kształt (włókna faliste i fibrylowane), wymiary (długość, średnica i smukłość), objętość w mieszance betonowej, a nawet konsystencji mieszanki. Celem przeprowadzonych badań doświadczalnych była ocena nośności betonu produkowanego w warunkach przemysłowych, modyfikowanego różnymi włóknami syntetycznymi o zróżnicowanym dawkowaniu. Docelowym kryterium wyboru włókien było spełnienie wymagań wytrzymałości resztkowej badanego elementu przy możliwie najmniejszym udziale wagowym zbrojenia rozproszonego. W trakcie prowadzonych badań oprócz wytrzymałości resztkowej PFRC, wyznaczono wytrzymałość na ściskanie, rozciąganie przy zginaniu oraz moduł sprężystości. Otrzymane wyniki oraz zależności siła-rozwarcie szczeliny, wykorzystano do walidacji modelu numerycznego normowej belki z nacięciem. Tak skalibrowany model materiałowy wykorzystano do budowy docelowego modelu MES i wstępnej oceny nośności fibrobetonowych kręgów prefabrykowanych w programie ATENA. Projekt „Regionalne Centrum Doskonałości w Inżynierii dla Jakości Życia i Rozwoju Technologii”, finansowany z subwencji Ministra Nauki i Szkolnictwa Wyższego w ramach programu „Regionalna Inicjatywa Doskonałości” (projekt nr RID/SP/0032/2024/01)
Słowa kluczowe
Rocznik
Strony
247--264
Opis fizyczny
Bibliogr. 44 poz., il., tab.
Twórcy
  • Rzeszow University of Technology, Faculty of Civil Engineering, Rzeszow, Poland
  • Rzeszow University of Technology, Faculty of Civil Engineering, Rzeszow, Poland
Bibliografia
  • [1] ACI Committee 222, Corrosion of Metals in Concrete, ACI Manual of Concrete Practice, Part-1. ACI, 1992.
  • [2] S. Jain and B. Pradhan, “Fresh, mechanical, and corrosion performance of self-compacting concrete in the presence of chloride ions”, Construction and Building Materials, vol. 247, art. no. 118517, 2020, doi: 10.1016/j.conbuildmat.2020.118517.
  • [3] M.G. Alberti, “Polyolefin Fiber-Reinforced Concrete: From Material Behaviour to Numerical and Design Considerations”, Ph.D. dissertation, Universidad Politécnica de Madrid, Spain, 2015.
  • [4] EN 14651:2005+A1:2007 Test Method for Metallic Fiber Concrete – Measuring the Flexural Tensile Strength. European Committee for Standardization, Brussels.
  • [5] ASTM C1609/C1609M-19 Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading). ASTM International, West Conshohocken, PA, 2019.
  • [6] CEN/TS 19101:2005 Design of Fiber Concrete Structures. European Committee for Standardization, Brussels.
  • [7] A.M. Brandt, “Fiber reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering”, Composite Structures, vol. 86, pp. 3-9, 2008.
  • [8] S.U. Islam and S.A. Waseem, “An experimental study on mechanical and fracture characteristics of hybrid fiber reinforced concrete”, Structures, vol. 68, art. no. 107053, 2024,no. doi: 10.1016/j.istruc.2024.107053.
  • [9] I.M.G. Bertelsen, L.M. Ottosen, and G. Fischer, “Quantitative analysis of the influence of synthetic fibers on plastic shrinkage cracking using digital image correlation”, Construction and Building Materials, vol. 199, pp. 124-137, 2019, doi: 10.1016/j.conbuildmat.2018.11.268.
  • [10] I. Markovic, “High-Performance Hybrid-Fiber Concrete”, PhD thesis, Delft University, Netherland, 2006.
  • [11] A. Richardson, “Polypropylene fibers in concrete with regard to durability,” Structural Survey, vol. 21, no. 2, pp. 87-94, 2003.
  • [12] A. El-Newihy, P. Azarsa, R. Gupta, and A. Biparva, “Effect of polypropylene fibers on self-healing and dynamic modulus of elasticity recovery of fiber reinforced concrete”, Fibers, vol. 6, no. 1, 2018, doi: 10.3390/fib6010009.
  • [13] I.A. Memon, A.A. Jhatial, S. Sohu, M.T. Lakhiar, and Z.H. Khaskheli, “Influence of fiber length on the behaviour of polypropylene fiber reinforced cement concrete”, Civil Engineering Journal, vol. 4, no. 9, pp. 2124-2131, 2018, doi: 10.28991/cej-03091144.
  • [14] Y. Wang, S. Backer, and V.C. Li, “no.An experimental study of synthetic fiber reinforced cementitious composites”, Journal of Materials Science, vol. 22, no. 12, pp. 4281-4291, 1987.
  • [15] B. Cotterell and Y.W. Mai, Fracture Mechanics of Cementitious Materials. Boca Raton, FL, USA: CRC Press, 1995, doi: 10.1201/9781482269338.
  • [16] R. Khan and K.A. Rahman, “Mechanical properties of polypropylene fiber reinforced concrete for M25 & M30 mixes: A comparative study”, International Journal of Scientific Engineering and Applied Science (IJSEAS), vol. 1, no. 5, pp. 327-340, 2015.
  • [17] V. Afroughsabet and T. Ozbakkaloglu, “Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers”, Construction and Building Materials, vol. 94, pp. 73-82, 2015, doi: 10.1016/j.conbuildmat.2015.06.051.
  • [18] A.N. Ede and A.O. Ige, “Optimal polypropylene fiber content for improved compressive and flexural strength of concrete”, IOSR Journal of Mechanical and Civil Engineering, vol. 11, no. 1, pp. 129-135, 2014.
  • [19] A.E. Richardson and S. Landless, “Compressive strength of concrete with polypropylene fiber additions”, Structural Survey, vol. 24, no. 2, pp. 138-153, 2006.
  • [20] no. C.S. Das, T. Dey, R. Dandapat, B.B. Mukharjee, and J. Kumar, “Performance evaluation of polypropylene fiber reinforced recycled aggregate concrete”, Construction and Building Materials, vol. 189, pp. 649-659, 2018, doi: 10.1016/j.conbuildmat.2018.09.036.
  • [21] J. Błazy, Ł. Drobiec, and P.Wołka, “Mechanical properties of polymer fibre reinforced concrete in the light of various standards”, Archives of Civil Engineering, vol. 70, no. 2, pp. 323-342, 2024, doi: 10.24425/ace.2024.149866.
  • [22] M. Nili and V. Afroughsabet, “The effects of silica fume and polypropylene fibers on the impact resistance and mechanical properties of concrete”, Construction and Building Materials, vol. 24, no. 6, pp. 927-933, 2010, doi: 10.1016/j.conbuildmat.2009.11.025.
  • [23] M. Małek,W. Łasica, M. Kadela, J. Kluczyński, and D. Dudek, “Physical and mechanical properties of polypropylene fiber-reinforced cement–glass composite”, Materials, vol. 14, no. 3, 2021, doi: 10.3390/ma14030637.
  • [24] Z.-h. Zhu, Y. Xiao, H.-j. Zhu, S.-no.d. Hu, and C. Yue, “Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin–fly ash based geopolymer”, Construction and Building Materials, vol. 4, pp. 1139-1143, 2010.
  • [25] Ł. Drobiec and J. Blazy, “Współczesne niemetaliczne zbrojenie rozproszone stosowane w konstrukcjach betonowych”, Izolacje, vol. 61, no. 5, pp. 70-84, 2020.
  • [26] P. Smarzewski, “Effect of curing period on properties of steel and polypropylene fiber reinforced ultra-high performance concrete”, IOP Conference Series: Materials Science and Engineering, vol. 245, art. no. 032059, 2017, doi: 10.1088/1757-899X/245/3/032059.
  • [27] PN-EN 12390-1:2012 Testing hardened concrete – Part 1: Shape, dimensions and other requirements for specimens and moulds. Polish Committee for Standardization, Warsaw, 2012.
  • [28] PN-EN 12390-2:2012 Testing hardened concrete – Part 2: Making and curing specimens for strength tests. Polish Committee for Standardization, Warsaw, 2012.
  • [29] PN-EN 12390-3:2019 Testing hardened concrete – Part 3: Compressive strength of test specimens. Polish Committee for Standardization, Warsaw, 2019.
  • [30] PN-EN 12390-4:2019 Testing hardened concrete – Part 4: Compressive strength – Specification for testing machines. Polish Committee for Standardization, Warsaw, 2019.
  • [31] PN-EN 12390-5:2019-08 Testing hardened concrete – Part 5: Flexural strength of test specimens. Polish Committee for Standardization, Warsaw, 2019.
  • [32] PN-EN 14651:2007 Test method for metallic fiber concrete – Measuring the flexural tensile strength (limit of proportionality (LOP), residual). Polish Committee for Standardization, Warsaw, 2007.
  • [33] M.S. Shetty and A.K. Jain, Concrete Technology: Theory and Practice. New Delhi: S Chand and Company Ltd., 2010.
  • [34] M. Hsie, C. Tu, and P.S. Song, “Mechanical properties of polypropylene hybrid fiber-reinforced concrete”, Materials Science and Engineering A, vol. 494, no. 1-2, pp. 153-157, 2008.
  • [35] PN-EN 12390-13:2014-02 Testing hardened concrete – Part 13: Determination of secant modulus of elasticity in compression. Polish Committee for Standardization, Warsaw, 2014.
  • [36] J. Blazy, Ł. Drobiec, and P. Wolka, “Flexural tensile strength of concrete with synthetic fibers”, Materials, vol. 14, no. 16, 2021, doi: 10.3390/ma14164428.
  • [37] PN EN 14889-1:2007 Fibers for concrete – Part 1: Steel fibers – Definitions, specifications and conformity. Polish Committee for Standardization, Warsaw, 2007.
  • [38] J.F. Olesen, “Fictitious crack propagation in fiber-reinforced concrete beams”, Journal of Engineering Mechanics, vol. 127, no. 3, pp. 272-280, 2001, doi: 10.1061/(ASCE)0733-9399(2001)127:3(272).
  • [39] K.P. Juhász, “Modified fracture energy method for fiber reinforced concrete”, presented at Fiber Concrete 2013, Prague, Czech Republic, Sept. 12-13, 2013.
  • [40] A. Enfedaque, M.G. Alberti, J.C. Gálvez, and P. Cabanas, “Numerical simulation of the fracture behavior of high-performance fiber-reinforced concrete by using a cohesive crack-based inverse analysis”, Materials, vol. 15, no. 1, art. no. 71, 2022, doi: 10.3390/ma15010071.
  • [41] M. Pająk, M. Krystek, M. Zakrzewski, and J. Domski, “Laboratory investigation and numerical modelling of concrete reinforced with recycled steel fibers”, Materials, vol. 14, no. 8, art. no. 1828, 2021, doi: 10.3390/ma14081828.
  • [42] PN-EN 1917:2004 Studzienki włazowe i niewłazowe z betonu niezbrojonego, betonu zbrojonego włóknem stalowym i żelbetowe. Polish Committee for Standardization, Warsaw, 2004.
  • [43] PN-EN 476:2012 Wymagania ogólne dotyczące elementów stosowanych w systemach kanalizacji deszczowej i sanitarnej. Polish Committee for Standardization, Warsaw, 2012.
  • [44] FIB – International Federation for Structural Concrete, Model Code 2010. Lausanne, Switzerland, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b26a441a-e669-4bfe-9a8e-35766c001f30
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.