PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioaccumulation of microcystins in invasive bivalves: a case study from the boreal lagoon ecosystem

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the current study we present the first report on the bioaccumulation of microcystins (MC) in zebra mussel Dreissena polymorpha from the eutrophic brackish water Curonian Lagoon. The bioaccumulation capacity was related to age structure of mussels and ambient environmental conditions. We also discuss the relevant implications of these findings for biomonitoring of toxic cyanobacteria blooms in the Curonian Lagoon and potential consequences for D. polymorpha cultivation activities considered for the futures as remediation measure. Samples for the analysis were collected twice per year, in June and September, in 2006, 2007 and 2008, from two sites within the littoral zone of the lagoon. The highest microcystin concentrations were measured in mussels larger than 30 mm length and sampled in 2006 (when a severe toxic cyanobacteria bloom occurred). In the following years, a consistent reduction in bioaccumulated MC concentration was noticed. However, certain amount of microcystin was recorded in mussel tissues in 2007 and 2008, when no cyanotoxins were reported in the phytoplankton. Considering high depuration rates and presence of cyanotoxins in the bottom sediments well after the recorded toxic blooms, we assume mechanism of secondary contamination when microcystin residuals could be uptaken by mussels with resuspended sediment particles.
Czasopismo
Rocznik
Strony
93--101
Opis fizyczny
Bibliogr. 95 poz., rys., tab., wykr., mapy
Twórcy
  • Coastal Research and Planning Institute, University of Klaipėda, H. Manto 84, LT 92294 Klaipeda, Lithuania
autor
  • Department of Marine Biology and Ecology, Institute of Oceanografy, University of Gdańsk, Gdynia, Poland
  • Coastal Research and Planning Institute, University of Klaipėda, H. Manto 84, LT 92294 Klaipeda, Lithuania
  • Coastal Research and Planning Institute, University of Klaipėda, H. Manto 84, LT 92294 Klaipeda, Lithuania
Bibliografia
  • [1] Adamovsky, O., Kopp, R., Hilscherova, K., Babica, P., Palikova, M., Paskova, V., Navratil, S., Marsalek, B., Blaha, L., 2007. Microcystin kinetics (bioaccumulation, elimination) and biochemical responses in common carp and silver carp exposed to toxic cyanobacterial blooms. Environ. Toxicol. Chem. 26, 2687—2693.
  • [2] Amorim, A., Vasconcelos, V., 1999. Dynamics of microcystins in the mussel Mytilus galloprovincialis. Toxicon 37, 1041—1052.
  • [3] Anderson, M.J., 2001. A new method for non-parametric multivariate analysis of variance. Aust. Ecol. 26, 32—46.
  • [4] Anderson, M.J., 2005. PERMANOVA: A FORTRAN Computer Program for Permutational Multivariate Analysis of Variance. Department of Statistics, University of Auckland, New Zealand, 24 pp.
  • [5] Anderson, M.J., Robinson, J., 2001. Permutation tests for linear models. Aust. N. Z. J. Stat. 43, 75—88.
  • [6] Babica, P., Kohoutek, J., Blaha, L., Adamovsky, O., Marsalek, B., 2006. Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. Anal. Bioanal. Chem. 385, 1545—1551.
  • [7] Bayne, B.L., Widdows, J., Worrall, C., 1977. Some temperature relationships in the physiology of two ecologically distinct bivalve populations. In: Vernberg, F.J., Calabrese, A., Thurberg, F.P., Vernberg, E.B. (Eds.), Physiological Responses of Marine Biota to Pollutants. Academic Press, New York, 379—400.
  • [8] Bervoets, L., Voets, J., Covaci, A., Chu, S.G., Qadah, D., Smolders, R., Schepens, P., Blust, R., 2005. Use of transplanted zebra mussels (Dreissena polymorpha) to assess the bioavailability of microcontaminants in Flemish surface waters. Environ. Sci. Technol. 39, 1492—1505.
  • [9] Bij de Vaate, A., Rajagopal, S., Van der Velde, G., 2010. The zebra mussel in Europe: summary and synthesis. In: Van der Velde, G. (Ed.), The Zebra Mussel in Europe. Backhuys Publishers, Leiden, 415—421.
  • [10] Buynevich, I.V., Damušytė, A., Bitinas, A., Olenin, S., Mažeika, J., Petrošius, R., 2011. Pontic-Baltic pathways for invasive aquatic species: geoarchaeological implications (Article) Geology and geoarchaeology of the Black Sea Region: beyond the flood Hypothesis. Geol. Soc. Am. Special Paper 473, 189—196.
  • [11] Carmichael, W.W., 1994. The toxins of cyanobacteria. Sci. Am. 270 (1), 78—86.
  • [12] Carmichael, W.W., 2001. Health effects of toxin-producing cyanobacteria: the CyanoHABs. Hum. Ecol. Risk Assess. 7, 1393—1407.
  • [13] Cazenave, J., Wunderlin, D.A., Bistoni, M.D.L., Ame, M.V., Krause, E., Pflugmacher, S., Wiegand, C., 2005. Uptake, tissue distribution and accumulation of microcystin-RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis — a field and laboratory study. Aquat. Toxicol. 75, 178—190.
  • [14] Chen, J., Xie, P., Guo, L., Zheng, L., Ni, L., 2005. Tissue distributions and seasonal dynamics of thehepatotoxic microcystins-LR and -RR in a freshwater snail (Bellamya aeruginosa) from a large shallow, eutrophic lake of the subtropical China. Environ. Pollut. 134, 423—430.
  • [15] Chorus, I., Bartram, J., 1999. Toxic Cyanobacteria in Water: A Guide to Public Health Significance, Monitoring and Management. Für WHO durch E & FN Spon/Chapman & Hall, London, 416 pp.
  • [16] Chuseve, R., Mastitsky, S., Zaiko, A., 2012. First report of endosymbionts in Dreissena polymorpha from the brackish Curonian Lagoon, SE Baltic Sea. Oceanologia 54 (4), 701-713, http://dx.doi. org/10.5697/oc.54-4.701.
  • [17] Claudi, R., Mackie, G.L., 1993. Practical Manual for Zebra Mussel Monitoring and Control. CRC Press, 240.
  • [18] Daunys, D., Zemlys, P., Olenin, S., Zaiko, A., Ferrarin, C., 2006. Impact of the zebra mussel Dreissena polymorpha invasion on the budget of suspended material in a shallow lagoon ecosystem. Helgoland Mar. Res. 60 (2), 113—120.
  • [19] Dillon, R.T., 2000. The Ecology of Freshwater Molluscs. Cambridge University Press, 509 pp.
  • [20] Dionisio Pires, L.M., Jonker, R.R., Van Donk, E., Laanbroek, H.J., 2004. Selective grazing by adults and larvae of the zebra mussel (Dreissena polymorpha): application of flow cytometry to natural seston. Freshw. Biol. 49, 116—126.
  • [21] Elliott, P., Aldridgem, D.C., Moggridge, G.D., 2008. Zebra mussel filtration and its potential uses in industrial water treatment. Water Res. 42, 1664—1674.
  • [22] Fahnenstiel, G.L., Bridgeman, T.B., Lang, G.A., Mccormick, M.J., Nalepa, T.F., 1995. Phytoplankton productivity in Saginaw Bay, Lake Huron: effects of zebra mussel (Dreissena polymorpha) colonization. J. Gt. Lakes Res. 21, 465—475.
  • [23] Ferrão-Filho, Kozlowski-Suzuki, 2011. Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar. Drugs 9, 2729—2772.
  • [24] Figueiredo, D.R., de, F., Azeiteiro, U.M., Esteves, S.M., Goncalves, J. M., Pereira, M.J., 2004. Microcystin-producing blooms — a serious global public health issue. Ecotoxicol. Environ. Saf. 59, 151—163.
  • [25] Funari, E., Testai, E., 2008. Human health risk assessment related to cyanotoxins exposure. Crit. Rev. Toxicol. 38, 97—125.
  • [26] Galkus, A., Jokšas, K., 1997. Sedimentary Material in the Transitional Aquasystem. Institute of Geography, Vilnius, 198 pp., (in Lithuanian with English summary).
  • [27] Gasiūnaitė, Z.R., 2000. Coupling of the limnetic and brackishwater plankton crustaceans in the Curonian Lagoon (Baltic Sea). Int. Rev. Hydrobiol. 85, 649—657.
  • [28] Gasiūnaitė, Z.R., Daunys, D., Olenin, S., Razinkovas, A., 2008. The Curonian Lagoon. In: Schiewer, U. (Ed.), Ecology of the Baltic Coastal Waters. Ecological Studies 197. Springer-Verlag, Berlin Heidelberg, 197—215.
  • [29] Gérard, C., Carpentier, A., Paillisson, J.M., 2008. Long-term dynamics and community structure of freshwater gastropods exposed to parasitism and other environmental stressors. Freshw. Biol. 53, 470—484.
  • [30] Gérard, C., Poullain, V., Lance, E., Acou, A., Brient, L., Carpentier, A., 2009. Influence of toxic cyanobacteria on community structure and microcystin accumulation of freshwater mollusks. Environ. Pollut. 157, 609—617.
  • [31] Gérard, C., Poullain, V., 2005. Variation in the response of the invasive species Potamopyrgus antipodarum (Smith) to natural (cyanobacterial toxin) and anthropogenic (herbicide atrazine) stressors. Environ. Pollut. 138, 28—33.
  • [32] Goedkoop, W., Naddafi, R., Grandin, U., 2011. Etention of N and P by zebra mussels (Dreissena polymorpha Pallas) and its quantitative role in the nutrient budget of eutrophic Lake Ekoln, Sweden. Biol. Invas. 13, 1077—1086.
  • [33] Hallegraeff, G.M., Anderson, D.M., Cembella, A.D., Enevoldsen, H.O., 2003. Manual on Harmful Marine Microalgae. IOC-UNESCO, Paris, 551 pp.
  • [34] Hawkins, R., Hulse, M., Wilkinson, C., Hodson, A., Gibson, M., 2001. The association football medical research programme: an audit of injuries in professional football. Br. J. Sports Med. 35, 43—47.
  • [35] Hendriks, A.J., Pieters, H., de Boer, J., 1998. Accumulation of metals, polycyclic (halogenated) aromatic hydrocarbons, and biocides in zebra mussel and eel from the Rhine and Meuse rivers. Environ. Toxicol. Chem. 17, 1885—1898.
  • [36] Ibelings, B.W., Bruning, K., de Jonge, J., Wolfstein, K., Dionisio Pires, L.M., Postma, J., Burger, T., 2005. Distribution of microcystins in a lake foodweb: no evidence for biomagnification. Microb. Ecol. 49, 487—500.
  • [37] Jespersen, A.M., Christoffersen, K., 1987. Measurements of chlorophyll a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol. 109, 445—454.
  • [38] Jonasson, S., Eriksson, J., Berntzon, L., Spáčil, Z., Ilag, L., Ronnevi, L.O., Rasmussen, U., Bergman, B., 2010. Transfero of a cyanobacterial neurotoxin within a temperate aquatic ecosystem suggests pathways for human exposure. Proc. Natl. Acad. Sci. U. S. A. 17 (20), 9252—9257.
  • [39] Jones, G.J., Orr, P.T., 1994. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res. 28 (4), 871—876.
  • [40] Kankaanpaa, H., Leinio, S., Olin, M., Sjovall, O., Meriluoto, J., Lehtonen, K.K., 2007. Accumulation and depuration of cyanobacterial toxin nodularin and biomarker responses in the mussel Mytilus edulis. Chemosphere 68, 1210—1217.
  • [41] Karatayev, A.Y., Burlakova, L.E., 1994. Filtration rates. In: Starobogatov, J.I. (Ed.), Freshwater Zebra Mussel Dreissena polymorpha (Pall.) (Bivalvia, Dreissenidae): Systematics, Ecology, Practical Meaning. Nauka, Moscow, (in Russian), 109—120.
  • [42] Karatayev, A.Y., Burlakova, L.E., Padilla, D.K., 2002. Impacts of zebra mussels on aquatic communities and their role as ecosystem engineers. In: Leppakoski, E., Gollasch, S., Olenin, S. (Eds.), Invasive Aquatic Species of Europe — Distribution, Impact and Management. Kluwer Academic Publishers, Dordrecht Boston London, 433—446.
  • [43] Keijola, A.M., Himberg, K., Esala, A.L., Sivonen, K., Hiisvirta, L., 1988. Removal of cyanobacterial toxins in water treatment processes: laboratory and pilot-scale experiment. Tox. Assess. 3, 643—656.
  • [44] Kublickas, A., 1959. Kušių marios Kolektyvinė monografija. Vilnius. 548.
  • [45] Kujbida, P., Hatanaka, E., Campa, A., Colepicolo, P., Pinto, E., 2006. Effects of microcystins on human polymorphonuclear leukocytes. Biochem. Biophys. Res. 341, 273—277.
  • [46] Kurmayer, R., Dittmann, E., Fastner, J., Chorus, I., 2002. Diversity of microcystin genes within a population of the toxic cyanobacterium Microcystis sp. in Lake Wannsee (Berlin, Germany). Microb. Ecol. 43, 107—118.
  • [47] Lahti, K., Rapala, J., Fardig, M., Niemela, M., Sivonen, K., 1997. Persistence of cyanobacterial hepatotoxin microcystin-LR in particulate material and dissolved in lake water. Water Reserve 31, 1005—1012.
  • [48] Lance, E., Paty, C., Bormans, M., Brient, L., Gérard, C., 2007. Interactions between cyanobacteria and gastropods II. Impact of toxic Planktothrix agardhii on the lifehistory traits of Lymnaea stagnalis. Aquat. Toxicol. 81, 389—396.
  • [49] Landsberg, J.H., 2002. The effects of harmful algal blooms on aquatic organisms. Rev. Fish. 10, 113—390.
  • [50] Latour, D., Salenc¸on, M.-J., Reyss, J.-L., Giraudet, H., 2007. Sedimentary imprint of Microcystis aeruginosa (Cyanobacteria) blooms in Grangent reservoir (Loire, France). J. Phycol. 43, 417—425.
  • [51] Lefcort, H., Aguon, M.Q., Bond, K.A., Chaquette, R., Kornachuk, P., Lang, B.Z., Martin, J.C., 2002. Indirect effects of heavy metals on parasites may cause shifts in snail species composition. Arch. Environ. Contam. Toxicol. 43, 34—41.
  • [52] Lindahl, O., Hart, R., Hernroth, B., Kollberg, S., Loo, L.-O., Olrog, L., Rehnstam-Holm, A.-S., Svensson, J., Svensson, S., Syversen, U., 2005. Improving marine water quality by mussel farming — a profitable solution for Swedish society. Ambio 131—138.
  • [53] Lorenzen, C.J., 1967. Determination of chlorophyll and pheo-pigments: spectrophotometric equations. Limnol. Oceanogr. 12, 343—346.
  • [54] Mazur-Marzec, H.H., Meriluoto, J.J., Pliński, M.M., Szafranek, J.J., 2006. Characterization of nodularin variants in Nodularia spumigena from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry. Rapid Commun. Mass Spectrom. 20, 2023.
  • [55] Msagati, T.A.M., Siame, B.A., Shushu, D.D., 2006. Evaluation of methods for the isolation, detection and quantification of cyanobacterial hepatotoxins. Aquat. Toxicol. 78, 382—397.
  • [56] Naddafi, R., 2007. The Invasion of the Zebra Mussel — Effects on Phytoplankton Community Structure and Ecosystem Function. Acta Universitatis Upsaijensis, Uppsala, 55 pp.
  • [57] Nagelkerke, L.A.J., Sibbing, F.A., Osse, J.W.M., 1995. Morphological divergence during growth in the large barbs (Barbus spp.) of Lake Tana, Ethiopia. Neth. J. Zool. 45, 431—454.
  • [58] Nicholls, K.H., 2001. CUSUM phytoplankton and chlorophyll functions illustrate the apparent onset of dreissenid mussel impacts in Lake Ontario. J. Great Lake Res. 27, 393—401.
  • [59] Nicholson, B., Papageorgiou, J., Humpage, A.E., Steffensen, D., Monis, P., Linke, T., Fanok, S., Shaw, G., Eaglesham, G., Davis, B., Wickramasinhe, W., Stewart, I., Carmichael, W., Servaites, J., 2007. Determination and Significance of Emerging Algal Toxins (Cyanotoxins). USA. 102—110.
  • [60] Olenina, I., 1997. Phytoplankton development in the Curonian lagoon and south-eastern Baltic Sea coastal area. PhD ThesisInstitute of Botany, Vilnius.
  • [61] Olenin, S., Orlova, M., Minchin, D., 1999. In: Gollasch, S., Minchin, D., Rosenthal, H., Voigt, M. (Eds.), Case Histories on Introduced Species: Their General Biology, Distribution, Range Expansion and Impact (Inbook). Logos-Verlag, Berlin, 37—42.
  • [62] Orlova, M., Golubkov, S., Kalinina, L., Ignatieva, N., 2004. Dreissena polymorpha (Bivalvia: Dreissenidae) in the Neva estuary (eastern Gulf of Finland, Baltic Sea): is it a biofilter or source for pollution? Mar. Pollut. Bull. 49, 196—205.
  • [63] Paldavičienė, A., Mazur-Marzec, H., Razinkovas, A., 2009. Toxic cyanobacteria blooms in the Lithuanian part of the Curonian Lagoon. Oceanologia 51 (2), 203—216.
  • [64] Pawlik-Skowrońska, B., Kornijów, R., Pirszel, J., 2010. Sedimentary imprint of cyanobacterial blooms: a new tool for insight into recent history of lakes. Pol. J. Ecol. 58, 663—670.
  • [65] Pilkaitytė, R., Razinkovas, A., 2006. Factors controlling phytoplankton blooms in a temperate estuary: nutrient limitation and physical forcing. Hydrobiologia 555 (1), 41—48.
  • [66] Prepas, E.E., Kotak, B.G., Campbell, L.M., Evans, J.C., Hrudey, S.E., Holmes, C.F.B., 1997. Accumulation and elimination of cyanobacterial hepatotoxins by the freshwater clam Anodonta grandis simpsoniana. Can. J. Fish. Aquat. Sci. 54, 41—46.
  • [67] Pustelnikov, O., 1983. Kursiu Marios Lagoon as a sedimentation environment. In: Biogeochemistry of the Kursiu Marios Lagoon. Vilnius. 11—23, (in Russian).
  • [68] Rapala, J., Erkomaa, K., Kukkonen, J., Sivonen, K., Lahti, K., 2002. Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography—UV-detection and enzyme-linked immunosorbent assay. Comparison of methods. Anal Chim Acta 466, 213—231.
  • [69] Ray, W.J., Corkum, L.D., 1997. Predation of zebra mussels by round gobies Neogobius melanostomus. Environ. Biol. Fishes 50 (3), 267—273.
  • [70] Reeders, H.H., Bij de Vaate, A., 1990. Zebra mussels (Dreissena polymorpha): a new perspective for water quality management. Hydrobiologia 200/201, 437—450.
  • [71] Rhodes, L.L., Mackenzie, A.L., Kaspar, H.F., Todd, K.E., 2001. Harmful algae and mariculture in New Zealand. ICES J. Mar. Sci. 58, 398—403.
  • [72] Rositano, J., Nicholson, B.C., 1994. Water Treatment Techniques for Removal of Cyanobacterial Toxins from Water. Australian Centre for Water Quality Research, Salisbury, South Australia, 55 pp.
  • [73] Salanki, J., 2000. Invertebrates in neurotoxicology. Acta Biol. Hung. 51 (2—4), 287—307.
  • [74] Schernewski, G., Stybel, N., Neumann, T., 2012. Zebra mussel farming in the Szczecin (Oder) Lagoon: water-quality objectives and cost-effectiveness. Ecol. Soc. 17 (2), 1—4.
  • [75] Sipia, V.O., Sjovall, O., Valtonen, T., Barnaby, D.L., Codd, G.A., Metcalf, J.S., Kilpi, M., Mustonen, O., Meriluoto, J.A.O., 2006. Analysis of nodularin-R in eider (Somateria mollissima), roach (Rutilus rutilus L.), and flounder (Platichthys flesus L.) liver and muscle samples from the western Gulf of Finland, northern Baltic Sea. Environ. Toxicol. Chem. 25, 2834—2839.
  • [76] Smolders, R., Bervoets, L., Wepener, V., Blust, R., 2003. A conceptual framework for using mussels as biomonitors in whole effluent toxicity. Integr. Environ. Assess. Manage. 9 (3), 741—760.
  • [77] Starobogatov, J.I., Andreyeva, S.I., 1994. Areal of zebra mussel and its history. In: Starobogatov, J.I. (Ed.), Freshwater Zebra Mussel Dreissena polymorpha (Pall.) (Bivalvia, Dreissenidae): Systematics, Ecology, Practical Meaning. Nauka, Moscow, (in Russian), 47—56.
  • [78] Stybel, N., Fenske, C., Schernewski, G., 2009. Mussel cultivation to improve water quality in the Szczecin Lagoon. J. Coast. Res. 56, 1458—1463.
  • [79] Sutcliffe, D.W., Jones, J.G., 1992. Eutrophication: Research and Application to Water Supply. Freshwater Biological Association, Ambleside, 217 pp.
  • [80] Tsuji, K., Naito, S., Kondo, F., Ishikawa, N., Watanabe, M.F., Suzuki, M., Harada, K.I., 1994. Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization. Environ. Sci. Technol 28, 173—177.
  • [81] Tucker, J.K., Cronin, F.A., Soergel, D.W., Theiling, C.H., 1996. Predation on zebra mussels (Dreissena polymorpha) by common carp (Cyprinus carpio). J. Freshw. Ecol. 11, 363—372.
  • [82] Van Dolah, F.M., 2000. Marine algal toxins: origins, health effects, and their increased occurrence. Environ. Health Perspect. 108, 133—141.
  • [83] Vanderploeg, H.A., Nalepa, T.F., Jude, D.J., Mills, E.L., Holeck, K.T., Liebig, J.R., Grigorovich, I.A., Ojaveer, H., 2002. Dispersal and emerging ecological impacts of Ponto-Caspian species in the Laurentian Great Lakes. Can. J. Fish. Aquat. Sci. 59, 1209—1228.
  • [84] Vasconcelos, V.M., 1995. Uptake and depuration of the heptapeptide toxin microcystin-LR in Mitylus galloprovincialis. Aquat. Toxicol. 32, 227—237.
  • [85] Voets, J., Talloen, W., De Tender, T., van Dongenc, S., Covaci, A., Blust, R., Bervoets, L., 2006. Microcontaminant accumulation, physiological condition and bilateral asymmetry in zebra mussels (Dreissena polymorpha) from clean and contaminated surface waters. Aquat. Toxicol. 79, 213—225.
  • [86] Watanabe, K., Sakurai, Y., Segawa, S., Okutani, T., 1996. Development of the ommastrephid squid Todarodes pacificus, from fertilized egg to rhynchoteuthion paralarva. Am. Malacol. Bull. 13, 73—88.
  • [87] Woller-Skar, M., 2009. Zebra mussel (Dreissena polymorpha) promotion of cyanobacteria in low-nutrient lakes and the subsequent production and fate of microcystin. PhD diss.Bowling Green State University.
  • [88] Yokoyama, A., Park, H.D., 2003. Depuration kinetics and persistence of the cyanobacterial toxin microcystin-LR in the freshwater bivalve Unio douglasiae. Environ. Toxicol. 18, 61—67.
  • [89] Yu, F.Y., Liu, B.H., Chou, H.N., Chu, F.S., 2002. Development of a sensitive ELISA for the determination of microcystins in algae. J. Agric. Food Chem. 50, 4176—4182.
  • [90] Zaiko, A., Daunys, D., 2012. Density effects on the clearance rate of the zebra mussel Dreissena polymorpha — flume study results. Hydrobiologia 680, 79—89.
  • [91] Zaiko, A., Olenin, S., Daunys, D., 2009. Habitat engineering by the invasive zebra mussel Dreissena polymorpha (Pallas) in a boreal coastal lagoon: impact on biodiversity. Helgoland Mar. Res. 63 (1), 85—94.
  • [92] Zaiko, A., Paškauskas, R., Krevš, A., 2010. Biogeochemical alteration of benthic environment by zebra mussel Dreissena polymorpha (Pallas). Oceanologia 52 (4), 649—667.
  • [93] Zakaria, M.A., Hassan, Ei.-S.M., Wafaa, A.S., 2007. Microcystin con-centrations in the Nile River sediments and removal of microcystin-LR by sediments during batch experiments. Arch. Environ. Contam. Toxicol. 52, 489—495.
  • [94] Zimmermann, G., Dietrich, D.R., Schmid, P., Schlatter, C., 1997. Congenerspecific bioaccumulation of PCBs in different water bird species. Chemosphere 34, 1379—1388.
  • [95] Zurawell, R.W., Chen, H., Burke, J.M., Prepas, E.E., 2005. Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J. Toxicol. Environ. Health 8, 1—37.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b269f6a8-3443-4fd8-83b4-427b9f0c5623
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.