PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of fibers from end-of-life tires as a self-compacting concrete reinforcement - an experimental study

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
Beton zbrojony różnego rodzaju włóknami jest coraz chętniej stosowanym materiałem konstrukcyjnym. Obecnie stosowane stalowe zbrojenie rozproszone stanowią specjalnie w tym celu wytwarzane włókna o przeróżnej geometrii. Artykuł dotyczy możliwości zastosowania włókien stalowych pochodzących ze zużytych opon (RSF) do zbrojenia betonu samozagęszczalnego. Geometria RSF z ich małą średnicą, zmienną długością i zakrzywionym podłużnym kształtem powoduje powątpiewanie w ich skuteczność w mieszance betonowej w porównaniu z włóknami przemysłowymi. W celu określenia prawdziwego wpływu RSF na właściwości mechaniczne SCC wykonano testy ściskania i zginania. Zastosowano duże zawartości objętościowe RSF wynoszące 1.0% i 1.5%. Zgodnie z oczekiwaniami, odnotowano niewielki wpływ RSF na wytrzymałość betonu samozagęszczalnego na ściskanie. Wyniki uzyskane w badaniach czteropunktowego zginania wykazały, że włókna RSF są nie tylko materiałem, który poprawia plastyczność kruchej matrycy SCC, ale również są równomiernie rozmieszczone w matrycy. Zaaplikowanie wysokich zawartości objętościowych włókien istotnie zredukowały parametry reologiczne SCC, które były badane w teście rozpływu i L-box, jednakże nie spowodowały negatywnego wpływu na homogeniczność mieszanki. Podsumowując można stwierdzić, że włókna pochodzące z recyklingu opon są materiałem, który z powodzeniem może być stosowany jako zbrojenie rozproszone w betonie samozagęszczalnym.
EN
Concrete reinforced with various types of fibers is increasingly used construction material. The currently applied steel fibers are characterized by various geometrical parameters and are produced specially for this purpose. The paper deals with application of steel fibers coming from end-of-life tires (RSF) in self-compacting concrete. The geometry of RSF with small diameter, variable length and their curved longitudinal shape causes doubts in their effectiveness in the concrete mix in comparison to industrial fibers. To clarify the real influence of RSF on mechanical properties of self-compacting concrete (SCC) the compression and flexural tests were evaluated. The high amounts of RSF equal to 1% and 1.5% were choosen. As expected, RSF slightly influenced the compressive strength of SCC. The results from the four-point flexural tensile tests demonstrate that the RSF fibers were not only a material that improves the ductility of brittle SCC matrix but also were uniformly distributed in the matrix. The high amounts of RSF truly decreased the rheological parameters of SCC, what was tested in slump flow and L-box test, however, did not have a negative influence on the homogeneity of the mix. Concluding, the fibers from end-of-life tires were fibers that can be successfully used as a randomly distributed reinforcement of selfcompacting concrete.
Rocznik
Strony
105--113
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
autor
  • Faculty of Civil Engineering, The Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland
Bibliografia
  • [1] “End-of-life Tyre REPORT 2015” by European Tires and Rubber Manufacturers’Association, http://www.etrma.org/uploads/Modules/Documentsm anager/elt-report-v9a---final.pdf
  • [2] Aiello, M.A., Leuzzi, F., Centonze G., Maffezzoli A. (2009). Use of steel fibres recovered from waste tyres as reinforcement in concrete: Pull-out behaviour, compressive and flexural strength. Waste Management, 29, 1960-1970.
  • [3] Centonze, G., Leone, M., Aiello, A.M. (2012). Steel fibers from waste tires as reinforcement in concrete: A mechanical Characterization. Construction and Building Materials, 36, 45-67.
  • [4] Caggiano, A., Xargay, H., Folino, P., Martinelli, E. (2015). Experimental and numerical characterization of the bond behavior of steel fibers recovered from waste tires embedded in cementitious matrices. Cement & Concrete Composites, 62, 146-155.
  • [5] Groli, G., Caldentey, A.P., Soto, A.G. (2014). Cracking performance of SCC reinforced with recycled fibres - an experimental study. Structural Concrete, 15(2), 136-153.
  • [6] Sengul, O. (2016). Mechanical behavior of concretes containing waste steel fibers recovered from scrap tires. Construction and Building Materials, 122, 649-658.
  • [7] Bjegovic, D., Baricevic, A., Lakusic, S. (2012). Mechanical properties of high strength concrete with recycled steel fibres from waste tyres. in Proc. of the 8th RILEM International Symposium on Fibre Reinforced Concrete: Challenges and Opportunities (BEFIB 2012), Guimarăes, Portugal
  • [8] Mastali, M., Dalvand, A. (2016). Use of silica fume and recycled steel fibers in self-compacting concrete (SCC). Construction and Building Materials, 125, 196-209.
  • [9] Naaman, A. E. (2007). High performance fiber reinforced cement composites: classification and applications. CBM-CI international workshop, Karachi, Pakistan, 389-401.
  • [10] Pająk, M., Ponikiewski, T. (2015). The laboratory investigation on the influence of the polypropylene fibers on selected mechanical properties of hardened self-compacting concrete. Architecture Civil Engineering Environment, 8(3), 69-78.
  • [11] Brandt, A. M. (2008). Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Composite Structures, 86, 3-9.
  • [12] Huss,M., Tue, N.V. (2017). Innovative steel fibers and their effect on fiber distribution in beams - experimental investigations. Architecture Civil Engineering Environment, 10(3), 103-108.
  • [13] Sucharda, O., Bilek, V., Smirakova, M., Kubosek, J., Cajka, R. (2017). Comparative Evaluation of Mechanical Properties of Fibre-Reinforced Concrete and Approach to Modelling of Bearing Capacity Ground Slab. Periodica Polytechnica Civil Engineering, 61, 972-986.
  • [14] Naaman, A. E. (2003). Engineered steel fibers with optimal properties for reinforcement of cement composites. Journal of Advanced Concrete Technology, 3, 241-252.
  • [15] Yoo, D.Y., Kim, S.W., Park, J. J. (2017). Comparative flexural behavior of ultra-high-performance concrete reinforced with hybrid straight steel fibers. Construction and Building Materials, 132, 219-229.
  • [16] Pająk,M., Ponikiewski, T. (2017). Experimental investigation on hybrid steel fibers reinforced self-compacting concrete under flexure. Procedia Engineering, 193, 218-225.
  • [17] Smarzewski, P., Barnat-Hunek, D. (2017). Property Assessment of Hybrid Fiber-Reinforced Ultra-High- Performance Concrete. International Journal of Civil Engineering, https://doi.org/10.1007/s40999-017- 0145-3.
  • [18] Pająk, M. (2016). The investigation on flexural properties of hybrid fiber reinforced self-compacting concrete. Procedia Engineering, 161, 121-126.
  • [19] Katzer, J., Domski, J. (2012). Quality and mechanical properties of engineered steel fibres used as reinforcement for concrete. Construction and Building Materials, 34, 243-248.
  • [20] Alberti, M.G., Enfedaque, A., Gálvez, J.C. (2017). On the prediction of the orientation factor and fibre distribution of steel and macro-synthetic fibres for fibre-reinforced concrete. Cement and Concrete Composites, 77, 29-48.
  • [21] Cao, Q., Cheng, Y., Cao, M., Gao, M. (2017). Workability, strength and shrinkage of fiber reinforced expansive self-consolidating concrete. Construction and Building Materials, 131, 178-185.
  • [22] Banthia, N., Sappakittipakorn, M. (2007). Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cement Concrete Research, 37, 1366-1372.
  • [23] Yoo, D.Y., Kim, S., Park, G.J., Park, J.J., Kim, S.W. (2017). Effects of fiber shape, aspect ratio, and volume fraction on flexural behavior of ultra-high-performance fiber-reinforced cement composites. Composite Structures, 174, 375-388.
  • [24] Szwabowski, J., Gołaszewski, J. (2010). Cement paste properties and paste aggregate void saturation ratio as the factors governing the self-compactness and compressive strength of concrete. Cement Wapno Beton, XVII/LXXVII(2), 97-107.
  • [25] PN-EN 12390-3 Testing hardened concrete - Part 3: Compressive strength of test specimens.
  • [26] ASTM C1609/ C1609M - 12 Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading).
  • [27] Japan Society of Civil Engineers (1984). Method of Test for Flexural Strength and Flexural Toughness of Fiber Reinforced Concrete. Standard SF-4, 58-66.
  • [28] Glinicki, M.A. (2010). Materiały XXV Ogólnopolskiej Konferencji “Warsztaty Pracy Projektanta Konstrukcji” (Proceedings of the XXV Polish National Conference “Workshops of the Structural Designer Work”), Szczyrk 2010, 279-308.
Uwagi
PL
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b269ad50-ea3e-4e44-9cd5-fb42212b8967
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.