PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Radiation of Sound Waves by a Semi-Infinite Duct with Outer Lining and Perforated End

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Radiation of sound waves from a semi-infinite cylindrical duct with perforated end whose outer wall is coated with acoustically absorbent material is investigated by using the Wiener-Hopf technique in conjunction with the mode matching technique. A semi-infinite duct with a perforated screen can be used as a model for many engineering applications, such as noise reduction in exhausts of automobile engines, in modern aircraft jet, and turbofan engines. In particular, we aim to find the effects of outer lining and perforated end to sound pressure level for the underlying problem by using the standard Wiener-Hopf and mode matching techniques. We also present some numerical illustrations by determining the sound pressure level for different parameters such as soft and rigid outer surface, with and without perforated end, etc. Such investigations are useful in the reduction of noise effects generated through variety of sources.
Słowa kluczowe
Rocznik
Strony
77--84
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Department of Applied Mathematics, Marmara University, Istanbul, Turkey
Bibliografia
  • 1. Abramowitz M., Stegun I. (1964), Handbook of mathematical functions, Dover, New York.
  • 2. Büyükaksoy A., Polat B. (1998), Diffraction of acoustic waves by a semi-infinite cylindrical impedance pipe of certain wall thickness, Journal of Engineering Mathematics, 33: 333-352, doi: 10.1023/A:1004301829276.
  • 3. Demir A., Büyükaksoy A., Polat B. (2002), Diffraction of plane sound waves by a rigid circular cylindrical cavity with an acoustically absorbing internal surface, ZAMM – Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 82 (9): 619-629, doi: 10.1002/1521-4001(200209)82:9<619::AID-ZAMM619>3.0.CO;2-E.
  • 4. Demir A., Rienstra S. (2010), Sound radiation from a lined exhaust duct with lined afterbody, 16th AIAA/CEAS Aeroacoustics Conference, 18 pages, Stockholm, Sweden, doi: 10.2514/6.2010-3947.
  • 5. Hassan M., Rawlins A. D. (1999), Sound radiation in a planar trifurcated lined duct, Wave Motion, 29 (2): 157-174, doi: 10.1016/S0165-2125(98)00026-2.
  • 6. Levine H., Schwinger J. (1948), On the radiation of sound from an unflanged circular pipe, Physical Review, 73 (4): 383-406, doi: 10.1103/PhysRev.73.383.
  • 7. Mittra R., Lee S. W. (1971), Analytical techniques in the theory of guided waves, The Macmillan Company.
  • 8. Nilsson B., Brander O. (1980), The propagation of sound in cylindrical ducts with mean flow and bulk-reacting lining. I. Modes in an infinite duct, IMA Journal of Applied Mathematics, 26 (3): 269-298, doi: 10.1093/imamat/26.3.269.
  • 9. Noble B. (1958), Methods based on the Wiener-Hopf techniques, Pergamon Press, London.
  • 10. Peake N., Abrahams I. D. (2020), Sound radiation from a semi-infinite lined duct, Wave Motion, 92, doi: 10.1016/j.wavemoti.2019.102407.
  • 11. Rawlins A. D. (1978), Radiation of sound from an unflanged rigid cylindrical duct with an acoustically absorbing internal surface, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 361 (1704): 65-91, doi: 10.1098/rspa.1978.0092.
  • 12. Rawlins A. D. (2007), Wave propagation in a bifurcated impedance-lined cylindrical waveguide, Journal of Engineering Mathematics, 59 (4): 419-435, doi: 10.1007/s10665-007-9172-4.
  • 13. Rienstra S. W. (2007), Acoustic scattering at a hard-soft lining transition in a flow duct, Journal of Engineering Mathematics, 59 (4): 451-475, doi: 10.1007/s10665-007-9193-z.
  • 14. Snakowska A. (1992), The acoustic far field of an arbitrary Bessel mode radiating from a semi-infinite unflanged cylindrical wave-guide, Acta Acustica United with Acustica, 77 (2): 53-62.
  • 15. Snakowska A., Idczak H. (2006), The saddle point method applied to selected problems of acoustics, Archives of Acoustics, 31 (1): 57-76.
  • 16. Snakowska A., Jurkiewicz J., Gorazd L. (2017), A hybrid method for determination of the acoustic impedance of an unflanged cylindrical duct for multimode wave, Journal of Sound and Vibration, 396: 325-339, doi: 10.1016/j.jsv.2017.02.040.
  • 17. Sullivan J. W., Crocker M. J. (1978), Analysis of concentric-tube resonators having unpartitioned cavities, Journal of the Acoustical Society of America, 64 (1): 207-215, doi: 10.1121/1.381963.
  • 18. Tiryakioglu B. (2019), Sound radiation from the perforated end of a lined duct, Acta Acustica united with Acustica, 105 (4): 591-599, doi: 10.3813/AAA.919340.
  • 19. Tiryakioglu B., Demir A. (2019), Radiation analysis of sound waves from semi-infinite coated pipe, International Journal of Aeroacoustics, 18 (1): 92-111, doi: 10.1177/1475472X18812802.
  • 20. Tiryakioglu B., Demir A. (2019), Sound wave radiation from partially lined duct, Archives of Acoustics, 44 (2): 239-249, doi: 10.24425/aoa.2019.128487.
  • 21. Tiwana M. H., Nawaz R., Mann A. B. (2016), Radiation of sound in a semi-infinite hard duct inserted axially into a larger infinite lined duct, Analysis and Mathematical Physics, 7: 525-548, doi: 10.1007/s13324-016-0154-4.
  • 22. Wang J., Rubini P., Qin Q. (2017), Application of a porous media model for the acoustic damping of perforated plate absorbers, Applied Acoustics, 127: 324-335, doi: 10.1016/j.apacoust.2017.07.003.
  • 23. Watson G. N. (1944), Theory of Bessel functions, Cambridge University Press, Cambridge.
  • 24. Weinstein L. A. (1969), The theory of diffraction and the factorization method, Golem Press, Boulder, Colorado.
  • 25. Yang C., Cheng L., Hu Z. (2015), Reducing interior noise in a cylinder using micro-perforated panels, Applied Acoustics, 95: 50-56, doi: 10.1016/j.apacoust.2015.02.003.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b267c2b9-501a-465a-94fc-77aeeadb5d6f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.