PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper we present OvaExpert, an intelligent system for ovarian tumor diagnosis. We give an overview of its features and main design assumptions. As a theoretical framework the system uses fuzzy set theory and other soft computing techniques. This makes it possible to handle uncertainty and incompleteness of the data, which is a unique feature of the developed system. The main advantage of OvaExpert is its modular architecture which allows seamless extension of system capabilities. Three diagnostic modules are described, along with examples. The first module is based on aggregation of existing prognostic models for ovarian tumor. The second presents the novel concept of an Interval-Valued Fuzzy Classifier which is able to operate under data incompleteness and uncertainty. The third approach draws from cardinality theory of fuzzy sets and IVFSs and leads to a bipolar result that supports or rejects certain diagnoses.
Twórcy
autor
  • Department of Imprecise Information Processing Methods, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
  • Department of Imprecise Information Processing Methods, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
  • Department of Imprecise Information Processing Methods, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
  • Department of Imprecise Information Processing Methods, Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Umultowska 87, 61-614 Poznań, Poland
autor
  • Division of Gynecological Surgery, Poznan University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
  • Division of Gynecological Surgery, Poznan University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
Bibliografia
  • [1] du Bois A, Rochon J, Pfisterer J, Hoskins WJ. Variations in institutional infrastructure physician, specialization and experience, and outcome in ovarian cancer: a systematic review. Gynecol Oncol 2009;112(2):422–36.
  • [2] Alcázar JL, Mercé LT, Laparte C, Jurado M, López-García G. A new scoring system to differentiate benign from malignant adnexal masses. Obstet Gynecol Surv 2003;58 (7):462–3.
  • [3] Szpurek D, Moszyński R, Zietkowiak W, Spaczynski M, Sajdak S. An ultrasonographic morphological index for prediction of ovarian tumor malignancy. Eur J Gynaecol Oncol 2005;26(1):51–4.
  • [4] Timmerman D, Testa AC, Bourne T, Ferrazzi E, Ameye L, Konstantinovic ML, et al. Logistic regression model to distinguish between the benign and malignant adnexal mass before surgery: a multicenter study by the International Ovarian Tumor Analysis Group. J Clin Oncol 2005;23(34):8794–801.
  • [5] Jacobs I, Oram D, Fairbanks J, Turner J, Frost C, Grudzinskas JG. A risk of malignancy index incorporating CA 125, ultrasound and menopausal status for the accurate preoperative diagnosis of ovarian cancer. BJOG: Int J Obst Gynaecol 1990;97(10):922–9.
  • [6] Mol BWJ, Boll D, De Kanter M, Heintz APM, Sijmons EA, Oei SG, et al. Distinguishing the benign and malignant adnexal mass: an external validation of prognostic models. Gynecol Oncol 2001;80(2):162–7.
  • [7] Van Calster B, Van Hoorde K, Valentin L, Testa AC, Fischerova D, Van Holsbeke C, et al. Evaluating the risk of ovarian cancer before surgery using the ADNEX model to differentiate between benign, borderline, early and advanced stage invasive, and secondary metastatic tumours: prospective multicentre diagnostic study. BMJ 2014;349:5920.
  • [8] Moszyński R, Żywica P, Wójtowicz A, Szubert S, Sajdak S, Stachowiak A, et al. Menopausal status strongly influences the utility of predictive models in differential diagnosis of ovarian tumors: an external validation of selected diagnostic tools. Ginekol Pol 2014;85 (12):892–9.
  • [9] Van Holsbeke C, Van Calster B, Valentin L, Testa AC, Ferrazzi E, Dimou I, et al. External validation of mathematical models to distinguish between benign and malignant adnexal tumors: a multicenter study by the International Ovarian Tumor Analysis Group. Clin Cancer Res 2007;13(15):4440–7.
  • [10] Dyczkowski K, Wójtowicz A, Zywica P, Stachowiak A, Moszynski R, Szubert S. An intelligent system for computer-aided ovarian tumor diagnosis. Intelligent Systems'2014. Springer; 2015. p. 335–43.
  • [11] Stachowiak A, Dyczkowski K, Wójtowicz A, Zywica P, Wygralak M. A bipolar view on medical diagnosis in OvaExpert system. Flexible Query Answering Systems 2015. 2016. pp. 483–92.
  • [12] Han P, Klein W, Arora NK. Varieties of uncertainty in health care: a conceptual taxonomy. Med Decis Making 2011;31 (6):828–38.
  • [13] Wójtowicz A, Żywica P, Szarzynski K, Moszynski R, Szubert S, Dyczkowski K, et al. Dealing with uncertainty in ovarian tumor diagnosis. In: Atanassov KT, et al., editors. New developments in fuzzy sets, intuitionistic fuzzy sets, generalized nets and related topics. Warsaw: IBS PAN – SRI PAS; 2014.
  • [14] Timmerman D, Valentin L, Bourne TH, Collins WP, Verrelst H, Vergote I. Terms, definitions and measurements to describe the sonographic features of adnexal tumors: a consensus opinion from the International Ovarian Tumor Analysis (IOTA) group. Ultrasound Obstet Gynecol 2000;16 (5):500–5.
  • [15] Timmerman D, Bourne TH, Tailor A, Collins WP, Verrelst H, Vandenberghe K, et al. A comparison of methods for preoperative discrimination between malignant and benign adnexal masses: the development of a new logistic regression model. Am J Obstet Gynecol 1999;181(1): 57–65.
  • [16] Atanassov KT. Intuitionistic fuzzy sets. Springer; 1999.
  • [17] Wygralak M. Intelligent counting under information imprecision. Studies in fuzziness and soft computing, vol. 292. Springer; 2013.
  • [18] De SK, Biswas R, Roy AR. An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst 2001;117 (2):209–13.
  • [19] Szmidt E, Kacprzyk J. An intuitionistic fuzzy set based approach to intelligent data analysis: an application to medical diagnosis. Recent advances in intelligent paradigms and applications. Springer; 2003. p. 57–70.
  • [20] Anna Pankowska, Maciej Wygralak. On hesitation degrees in IF-set theory. In: Leszek R, Jorg S, Ryszard T, Lotfi Z, editors. Artificial intelligence and soft computing. LNAI, vol. 3070. Heidelberg: Springer; 2004. p. 338–43.
  • [21] Stukan M, Dudziak M, Ratajczak K, Grabowski JP. Usefulness of diagnostic indices comprising clinical, sonographic, and biomarker data for discriminating benign from malignant ovarian masses. J Ultrasound Med 2015;34(2):207–17.
  • [22] Yager RR. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans Syst Man Cybern 1988;18(1):183–90.
  • [23] Żywica P, Wójtowicz A, Stachowiak A, Dyczkowski K. Improving medical decisions under incomplete data using interval-valued fuzzy aggregation. Proceedings of 9th European Society for Fuzzy Logic and Technology (EUSFLAT); 2015. p. 577–84.
  • [24] Stachowiak A, Żywica P, Dyczkowski K, Wójtowicz A. An interval-valued fuzzy classifier based on an uncertainty-aware similarity measure. Intelligent Systems'2014. Springer; 2015. p. 741–51.
  • [25] Zadeh LA. The concept of a linguistic variable and its application to approximate reasoning—i. Inf Sci 1975;8 (3):199–249.
  • [26] Diering M, Dyczkowski K, Hamrol A. New method for assessment of raters agreement based on fuzzy similarity. In: Herrero A, Sedano J, Baruque B, Quintian H, Corchado E, editors. 10th International Conference on Soft Computing Models in Industrial and Environmental Applications. Advances in Intelligent Systems and Computing, vol. 368. Springer International Publishing; 2015. p. 415–25.
  • [27] Zadeh LA. A computational approach to fuzzy quantifiers in natural languages. Comput Math Appl 1983;9(1):149–84.
  • [28] Kujawinska A, Diering M, Hamrol A. Measurement system analysis combined with Shewhart's approach. Key Eng Mater 2015;637:7–11.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2665386-b22f-41d3-a517-4c5dbb9fa692
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.