PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effect of temperature and nitrogen deprivation on cell morphology and physiology of Symbiodinium

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nutrients and temperature are the major elements in maintaining stable endosymbiotic relationships. The mechanisms and response of cultured Symbiodinium cells in the absence of nitrogen, and at various temperatures are still unclear. The present study investigated the influence of different temperatures and nitrogen-deprivation on free-living Symbiodinium cultures. The physiological responses of free-living Symbiodinium cells cultured at different temperatures during nitrogen deprivation under a 12:12 h light:dark were measured. Symbiodinium cell growth was significantly lower in response to lower temperatures. Transmission electron micrographs (TEMs) revealed the formation of lipid droplets induced by nitrogen deprivation under different temperatures. The results of this study will increase our understanding of adaptive responses occurring in Symbiodinium under environmental stress.
Słowa kluczowe
Czasopismo
Rocznik
Strony
272--278
Opis fizyczny
Bibliogr. 62 poz., wykr., fot.
Twórcy
autor
  • Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
autor
  • Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Pingtung, Taiwan
autor
  • Department of Biotechnology, National Formosa University, Yunlin, Taiwan
autor
  • Department of Biotechnology, National Formosa University, Yunlin, Taiwan
  • Challenge Bioproducts Co., Ltd., Yunlin, Taiwan
autor
  • Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Pingtung, Taiwan
  • Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
  • Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung, Taiwan
autor
  • Department of Forestry and Natural Resources, National Chiayi University, Chiayi, Taiwan
autor
  • Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Pingtung, Taiwan
  • Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
  • Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung, Taiwan
autor
  • Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Pingtung, Taiwan
  • Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
Bibliografia
  • [1] Bajguz, A., 2009. Brassinosteroid enhanced the level of abscisic acid in Chlorella vulgaris subjected to short-term heat stress. J. Plant Physiol. 166 (8), 882—886.
  • [2] Baker, D. M., Andras, J. P., Jordán-Garza, A. G., Fogel, M. L., 2013. Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades. ISME J. 7 (6), 1248—1251.
  • [3] Belda, C. A., Lucas, J. S., Yellowlees, D., 1993. Nutrient limitation in the giant clam zooxanthellae symbiosis: effect of nutrient supplement on growth of the symbiotic partners. Mar. Biol. 117 (4), 655—664.
  • [4] Blank, R. J., Huss, V. A. R., 1989. DNA divergency and speciation in Symbiodinium (Dinophyceae). Plant Syst. Evol. 163 (3), 153—163.
  • [5] Bligh, E. G., Dyer, W. J., 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37 (8), 911—917.
  • [6] Converti, A. A. A., Casazza, E. Y., Ortiz, P. P., Borghi, M. D., 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48 (6), 1146—1151.
  • [7] Davy, K. S., Allemand, D., Weis, V. M., 2012. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76 (2), 229—261.
  • [8] Doney, S. C., Fabry, V. J., Feely, R. A., Kleypas, J. A., 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169—192.
  • [9] Dubinsky, Z., Berman-Frank, I., 2001. Uncoupling primary production from population growth in photosynthesizing organisms in aquatic ecosystems. Aquat. Sci. 63 (1), 4—17.
  • [10] Duce, R. A., LaRoche, J., Altieri, K., Arrigo, K. R., Baker, A. R., Capone, D. G., Cornell, S., Dentener, F., Galloway, J., Ganeshram, R. S., Geider, R. J., Jickells, T., Kuypers, M. M., Langlois, R., Liss, P. S., Liu, S. M., Middelburg, J. J., Moore, C. M., Nickovic, S., Oschlies, H., Pedersen, T., Prospero, J., Schlitzer, R., Seitzinger, S., Sorensen, L. L., Uematsu, M. M., Ulloa, O., Voss, M., Ward, B., Zamora, L., 2008. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320 (5878), 893—897.
  • [11] Dunn, S. R., Schnitzler, C. E., Weis, V. M., 2007. Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc. R. Soc. B 274 (1629), 3079—3085.
  • [12] Freudenthal, H. D., 1962. Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella: taxonomy, life cycle and morphology. J. Protozool. 9 (1), 45—52.
  • [13] Fuchs, B., Schiller, J., Sub, R., Schurenberg, M., 2007. A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal. Bioanal. Chem. 389 (3), 827—834.
  • [14] Fujise, L., Yamashita, H., Suzuki, G., Sasaki, K., Liao, L. M., Koike, K., 2014. Moderate thermal stress causes active and immediate expulsion of photosynthetically damaged zooxanthellae (Symbiodinium) from corals. PLoS One 9 (12), e114321.
  • [15] Graham, L. E., Wilcox, L. W., 2000. Algae. Prentice Hall, Upper Saddle River, NJ, 640 pp.
  • [16] Hastie, L. C., Waston, T. C., Isamu, T., 1992. Effect of nutrient enrichment on Tridacna derasa seed: dissolved in organic nitrogen increases growth rate. Aquaculture 106 (1), 41—49.
  • [17] Hockin, N. L., Mock, T., Mulholland, F., Kopriva, S., Malin, G., 2012. The response of diatom central carbon metabolism to nitrogen starvation is different from that of green algae and higher plants. Plant Physiol. 158 (1), 299—312.
  • [18] Hoegh-Guldberg, O., Smith, J., 1989. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol. 129 (3), 279—303.
  • [19] Hu, H., Gao, K., 2005. Response of growth and fatty acid compositions of Nannochloropsis sp. to environmental factors under elevated CO2 concentration. Biotechnol. Lett. 28 (13), 987—992.
  • [20] Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., Bradbury, R. H., Cooke, R., Erlandson, J., Estes, J. A., Hughes, T. P., Kidwell, S., Lange, C. B., Lenihan, H. S., Pandolfi, J. M., Peterson, C. H., Steneck, R. S., Tegner, M. J., Warner, R. R., 2001. Historical overfishing and the recent collapse of coastal ecosystem. Science 293 (5530), 629—637.
  • [21] Jeong, H. J., Lee, S. Y., Kang, N. S., Yoo, Y. D., Lim, A. S., Lee, M. J., Kim, H. S., Yih, W. H., LaJeunesse, T. C., 2014. Genetics and morphology characterize the dinoflagellate Symbiodinium voratum, n. sp. (Dinophyceae) as the sole representative of Symbiodinium clade E. J. Eukaryot. Microbiol. 61 (1), 75—94.
  • [22] Jiang, P. L., Pasaribu, B., Chen, C. S., 2014. Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses. PLoS One 9 (1), e87416.
  • [23] Kinzie III, R. A., Takayama, M., Santos, S. R., Coffroth, M. A., 2001. The adaptive bleaching hypothesis: experimental tests of critical assumptions. Biol. Bull. 200 (1), 51—58.
  • [24] Koop, K., Booth, D., Broadbent, A., Brodie, J., Bucher, D., Capone, D., Coll, J., Dennison, W., Erdmann, M., Harrison, P., Hoegh-Guldberg, O., Hutchings, P., Jones, G. B., Larkum, A. W. D., O'Neil, J., Steven, A., Tentori, E., Ward, S., Williamson, J., Yellowlees, D., 2001. ENCORE: the effect of nutrient enrichment on coral reefs. Synthesis of results and conclusions. Mar. Pollut. Bull. 42 (2), 9—120.
  • [25] Kroecker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duarte, C. M., Gattuso, J. M., 2013. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19 (6), 1884—1896.
  • [26] Li, X., Hu, H. Y., Yang, J., 2010. Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnol. 27 (1), 59—63.
  • [27] Lin, I. P., Jiang, P. L., Chen, C. S., Tzen, J. T. C., 2012. A unique caleosin serving as the major integral protein in oil bodies isolated from Chlorella sp. cells cultured with limited nitrogen. Plant Physiol. Biochem. 61, 80—87.
  • [28] Macedo, R. V. T., Alegre, R. M., 2001. Influence of nitrogen content in the cultivation of Spirulina maxima in two temperature levels — Part II, Produção de Lipídios. Ciênc. Tecnol. Aliment. Campinas 21 (2), 183—186.
  • [29] Marubini, F., Davies, P. S., 1996. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar. Biol. 127 (2), 319—328.
  • [30] Mayfield, A. B., Chen, M. N., Meng, P. J., Lin, H. J., Chen, C. S., Liu, P. J., 2013. The physiological response of the reef coral Pocillopora damicornis to elevated temperature: results from coral reef mesocosm experiments in Southern Taiwan. Mar. Environ. Res. 86, 1—11.
  • [31] Mayfield, A. B., Wang, L. H., Tang, P. C. C., Fan, T. Y., Hsiao, Y. Y., Tsai, C. L., Chen, C. S., 2011. Assessing the impacts of experimentally elevated temperature on the biological composition and molecular chaperone gene expression of a reef coral. PLoS One 6 (10), e26529.
  • [32] McAuley, P. J., 1987. Nitrogen limitation and amino-acid metabolism of Chlorella symbiotic with green hydra. Planta 171 (4), 532—538.
  • [33] Muscatine, L., 1980. Uptake, retention, and release of dissolved inorganic nutrients by marine alga-invertebrate associations. In: Cook, C. B., Pappas, P. W., Rudolph, E. D. (Eds.), Cellular Interactions in Symbiosis and Parasitism. Ohio Univ. Press, Columbus, 229—244.
  • [34] Muscatine, L., Porter, J. W., 1977. Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27 (7), 454—460.
  • [35] Nitschke, M .R., Davy, S. K., Cribb, T. H., Ward, S., 2015. The effect of elevated temperature and substrate on free-living Symbiodinium cultures. Coral Reefs 34 (1), 161—171.
  • [36] Oku, H., Yamashiro, H., Onaga, K., 2003. Lipid biosynthesis from [14C]-glucose in the coral Montipora digitata. Fish. Sci. 69 (3), 625—631.
  • [37] Oliveira, M. A. C. L., Monteiro, M. P. C., Robbs, P. G., Leite, S. G. F., 1999. Growth and chemical composition of Spirulina maxima and Spirulina platensis biomass at different temperatures. Aquacult. Int. 7 (4), 261—275.
  • [38] Pasaribu, B., Lin, I. P., Chen, C. S., Lu, C. Y., Jiang, P. L., 2014. Nutrient limitation in Auxenochlorella protothecoides induces qualitative changes of fatty acid and expression of caleosin as a membrane protein associated with oil bodies. Biotechnol. Lett. 36 (1), 175—180.
  • [39] Pasaribu, B., Weng, L. C., Lin, I. P., Camargo, E., Tzen, J. T. C., Tsai, C. H., Ho, L. S., Lin, M. R., Wang, L. H., Chen, C. S., Jiang, P. L., 2015. Morphological variability and distinct protein profiles of cultured and endosymbiotic Symbiodinium cells isolated from Exaiptasia pulchella. Sci. Rep. 5, article no. 15353.
  • [40] Peng, S. E., Chen, C. S., Song, Y. F., Huang, H. T., Jiang, P. L., Chen, W. N., Fang, L. S., Lee, Y. C., 2012. Assessment of metabolic modulation in free-living versus endosymbiotic Symbiodinium using synchrotron radiation-based infrared microspectroscopy. Biol. Lett. 8 (3), 434—437.
  • [41] Piorreck, M., Baasch, K. H., Pohl, P., 1984. Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes. Phytochemistry 23 (2), 207—216.
  • [42] Poloczanska, E. S., Brown, C. J., Sydeman, W. J., Kiessling, W., Schoeman, D. S., Moore, P. J., Brander, K., Bruno, J. F., Buckley, L. B., Burrows, M. T., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., O'Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F., Thompson, S. H., Richardson, A. J., 2013. Global imprint of climate change on marine life. Nat. Clim. Change 3, 919—925.
  • [43] Powell, N. A., Shilton, A. N., Pratt, S., Chisti, Y., 2008. Factors influencing luxury uptake of phosphorus by microalgae in waste stabilization ponds. Environ. Sci. Technol. 42 (16), 5958—5962.
  • [44] Rahav, O., Dubinsky, Z., Achituv, Y., Falkowski, P. G., 1989. Ammonium metabolism in the zooxanthellate coral Stylophora pistillata. Proc. R. Soc. Lond. B: Biol. Sci. 236 (1284), 325—337.
  • [45] Rees, T. A.V ., 1989. The green hydra symbiosis and ammonium II. Ammonium assimilation and release by freshly isolated symbionts and cultured algae. Proc. R. Soc. B 235 (1281), 365—382.
  • [46] Rodrigues, L. J., Grottoli, A. G., 2007. Energy reserves and metabolism as indicators of coral recovery from bleaching. Limnol. Oceanogr. 52 (5), 1874—1882.
  • [47] Rowan, R., Powers, D. A., 1991. A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbiosis. Science 251 (4999), 1348—1351.
  • [48] Sammarco, P. W., Strychar, K. B., 2013. Responses to high seawater temperatures in zooxanthellate octocorals. PLoS One 8 (2), e54989.
  • [49] Saxby, T., Dennison, W. C., Hoegh-Guldberg, O., 2003. Photosynthetic responses of the coral Montipora digitata to cold temperature stress. Mar. Ecol.-Prog. Ser. 248, 85—97.
  • [50] Steen, R. G., 1986. Evidence of heterotrophy by zooxanthellae in symbiosis with Aiptasia pulchella. Biol. Bull. 170 (2), 267—278.
  • [51] Steen, R. G., Muscatine, L., 1987. Low temperature evokes rapid exocytosis symbiotic algae by a sea anemone. Biol. Bull. 172 (2), 246—263.
  • [52] Stimson, J., 1991. The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J. Exp. Mar. Biol. Ecol. 153 (1), 63—74.
  • [53] Strychar, K. B., Coates, M. ., Scott, P. W., Piva, T. J., Sammarco, P. W., 2005. Loss of symbiotic dinoflagellates (Symbiodinium; zooxanthellae) from bleached soft corals Sarcophyton, Sinularia, and Xenia. J. Exp. Mar. Biol. Ecol. 320 (2), 159—177.
  • [54] Szmant, A. M., 2002. Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuar. Coast. Shelf Sci. 25 (4), 743—766.
  • [55] Szmant-Froelich, A., Pilson, M. E. Q., 1984. Effects of feeding frequency and symbiosis with zooxanthellae on nitrogen metabolism and respiration of the coral Astrangia danae. Mar. Biol. 81 (2), 153—162.
  • [56] Wang, Z. T., Ullrich, N., Joo, S., Waffenschmidt, S., Goodenough, U., 2009. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 8 (12), 1856—1868.
  • [57] Weng, L. C., Pasaribu, B., Lin, I. P., Tsai, C. H., Chen, C. S., Jiang, P. L., 2014. Nitrogen limitation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from Aiptasia pulchella. Sci. Rep. 4 article no. 5777.
  • [58] Wiedenmann, J., D'Angelo, C., Smith, E. G., Hunt, A. N., Legiret, F. E., Postle, A. D., Achterberg, E. P., 2013. Nutrient enrichment can increase the susceptibility of reef corals to bleaching. Nat. Clim. Change 3, 160—164.
  • [59] Wilkinson, C., 2008. Status of Coral Reefs of the World: 2008. GCMN, Reef Rainforest Res. Centre, Townsville, 290 pp.
  • [60] Wooldridge, S. A., 2010. Is the coral-algae symbiosis really mutually beneficial for the partners? Bioessays 32 (7), 615—625.
  • [61] Wooldridge, S. A., 2014. Assessing coral health and resilience in a warming ocean: why looks can be deceptive. Bioessays 36 (11), 1041—1049.
  • [62] Yeesang, C., Cheirsilp, B., 2011. Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour. Technol. 102 (3), 3034—3040.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b25ce9b6-ced8-49f0-9803-010e7a0cbef1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.