PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

From quantity to quality: massive molecular dynamics simulation of nanostructures under plastic deformation in desktop and service grid distributed computing infrastructure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The distributed computing infrastructure (DCI) on the basis of BOINC and EDGeS-bridge technologies for high-performance distributed computing is used for porting the sequential molecular dynamics (MD) application to its parallel version for DCIwith Desktop Grids (DGs) and Service Grids (SGs). The actual metrics of the working DG-SG DCI were measured, and the normal distribution of host performances, and signs of log-normal distributions of Rother characteristics (CPUs, RAM, and HDD per host) were found. The practical feasibility and high efficiency of the MD simulations on the basis of DG-SG DCI were demonstrated during the experiment with the massive MD simulations for the large quantity of aluminum nanocrystals (Statistical analysis (Kolmogorov-Smirnov test, moment analysis, and bootstrapping analysis) of the defect density distribution over the ensemble of nanocrystals had show that change of plastic deformation mode is followed by the qualitative change of defect density distribution type over ensemble of nanocrystals. Some limitations (fluctuating performance, unpredictable availability of resources, etc.) of the typical DG-SG DCI were outlined, and some advantages (high efficiency, high speedup, and low cost) were demonstrated. Deploying on DG DCI allows to get new scientific quality from the simulated quantity of numerous configurations by harnessing sufficient computational power to undertake MD simulations in a wider range of physical parameters (configurations) in a much shorter timeframe.
Wydawca
Czasopismo
Rocznik
Strony
27--44
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • G. V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
autor
  • G. V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
autor
  • Taras Shevchenko National University of Kiev, Kiev, Ukraine
  • G. V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
Bibliografia
  • [1] Baskova O., Gatsenko O., Gordienko Y.: Enabling high-performance distributed computing to e-science by integration of 4th generation language environments with desktop grid architecture and convergence with global computing grid. In Proc. of Cracow Grid Workshop (CGW’10), pp. 234–243, Cracow, Poland, 2011.
  • [2] Cappello F., Djilali S., Fedak G., Herault T., Magniette F., Neri V., Lodygensky O.: Computing on large-scale distributed systems: Xtremweb architecture, programming models, security, tests and convergence with grid. Future Generation Computer Systems, 21(3):417–437, 2005.
  • [3] Cirne W., Brasileiro F., Andrade N., Costa L., Andrade A., Novaes R., Mowbray M.: Labs of the world, unite!!! Journal of Grid Computing, 4(3):225–246, 2006.
  • [4] Cramer H.: Mathematical methods of statistics, vol. 9. Princeton University Press, 1999.
  • [5] Cullen A., Frey H.: Probabilistic techniques in exposure assessment: a handbook for dealing with variability and uncertainty in models and inputs. Springer, 1999.
  • [6] Gatsenko O., Baskova O., G ordienko Y.: Desktop grid computing in materiale science lab – example of development and execution of application for defectaggregation simulations. In Proc. of Cracow Grid Workshop (CGW’09), pp. 264–273, Cracow, Poland, 2010.
  • [7] Gibrat R.: Les Inegalites economiques. Paris, France, 1931.
  • [8] Gordienko Y., Kuznetsov P., Zasimchuk E., Gontareva R., Schreiber J., Karbovsky V.: Multiscale 2d rectangular and 3d rhombic gratings created by selforganization of crystal structure defects under constrained cyclic deformation and fracture. Materials Science Forum, 567:421–424, 2008.
  • [9] Gordienko Y.: Molecular dynamics simulation of defect substructure evolution and mechanisms of plastic deformation in aluminum nanocrystals. Metallofizika i Noveishie Tekhnologii, 33(9):1217–1247, 2011 (in Ukrainian).
  • [10] Gordienko Y.: Generalized model of migration-driven aggregate growth- asymptotic distributions, power laws and apparent fractality. Int. J. Mod. Phys. B, 26(1), 2012.
  • [11] Gordienko Y.: Multiplicative and additive growth of computing resources in dictributed computing infrastructure on the basis of desktop and service grids. Journal of Grid Computing, 2012 (to be submitted).
  • [12] Gordienko Y., Gontareva R., Schreiber J., Zasimchuk E., Zasimchuk I.: Two-dimensional rectangular and three-dimensional rhombic grids created by self-organization of random nanoextrusions. Advanced Engineering Materials, 8(10):957–960, 2006.
  • [13] Gordienko Y., Zasimchuk E.: Single-crystal indicators of fatigue and plastik deformation damage. In Proc. of SPIE , 2361:312, 1994.
  • [14] Gordienko Y., Zasimchuk E.: Synergetic model of structure formation during plastic deformation of crystals. Philosophical Magazine A, 70(1):99–107, 1994.
  • [15] Gordienko Y., Zasimchuk E.: Simulation of building one-and two-dimensional structures on many scales in metals under load. Systems Analysis Modelling Simulation , 18:837–840, 1995.
  • [16] Gordienko Y., Zasimchuk E.: Dynamical phase transition in a lattice gas model with aggregation and self-organization. Physica A: Statistical and Theoretical Physics, 229(3-4):540–551, 1996.
  • [17] Gordienko Y., Zasimchuk E.: Metastable fractal aggregates as a result of competition between diffusion-limited aggregation and dissociation. In Proc. of the 8th Joint EPS-APS Int. Conf. on Physics Computing: PC’96: September 17-21, 1996, Krakow, Poland, p. 293. Academic Computer Centre CYFRONET-KRAKOW, 1996.
  • [18] Gordienko Y., Zasimchuk E., Gontareva R.: Unconventional deformation modes and surface roughness evolution in al single crystals under restricted cyclic tension conditions. Journal of Materials Science Letters, 22(3):241–245, 2003.
  • [19] Gumbel E.: Statistics of extremes. Dover Pubns, 2004.
  • [20] Jacobsen K., Norskov J., Puska M.: Interatomic interactions in the effective- medium theory. Physical Review B, 35(14):7423, 1987.
  • [21] Kacsuk P., Kovacs J., Farkas Z., Marosi A., Gombas G., Balaton Z.: SZTAKI desktop grid (szdg): a flexible and scalable desktop grid system. Journal of Grid Computing, 7(4):439–461, 2009.
  • [22] Kacsuk P., Sipos G.: Multi-grid, multi-user workflows in the p-grade grid portal. Journal of Grid Computing , 3(3):221–238, 2005.
  • [23] Kolmogorov A.: Sulla determinazione empirica di una legge di distribuzione. Giornale dellIstituto Italiano degli Attuari , 4(1):83–91, 1933.
  • [24] Kuznetsov P., Petrakova I., Gordienko Y., Zasimchuk E., Karbovskii V.: Formation of self-similar structures on { 100 } 00l aluminum single-crystal foils under cyclic tension. Physical Mesomechanics , 12(1-2):85–93, 2009.
  • [25] Plimpton S.: Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics , 117(1):1–19, 1995.
  • [26] Rinaldi A., Peralta P., Friesen C., Sieradzki K.: Sample-size effects in the yield behavior of nanocrystalline nickel. Acta Materialia , 56(3):511–517, 2008.
  • [27] Rinne H.: The Weibull distribution: a handbook . Chapman & Hall/CRC, 2009.
  • [28] Smirnov N.: Table for estimating the goodness of fit of empirical distributions. The Annals of Mathematical Statistics, 19(2):279–281, 1948.
  • [29] Tsuzuki H., Branicio P., Rino J.: Structural characterization of deformed crystals by analysis of common atomic neighborhood. Computer physics communications, 177(6):518–523, 2007.
  • [30] Urbah E., Kacsuk P., Farkas Z., Fedak G., Kecskemeti G., Lodygensky O., Marosi A., Balaton Z., Caillat G., Gombas G., et al.: Edges: bridging egee to boinc and xtremweb. Journal of Grid Computing, 7(3):335–354, 2009.
  • [31] Zasimchuk E., Gordienko Y., Gontareva R., Zasimchuk I.: Equidimensional fractal maps for indirect estimation of deformation damage in nonuniform aircraft alloys. J. Mater. Eng. Perf., 12(1):68–76, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b25cae67-0043-4f38-bf7e-1c488600c4e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.