PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Benzen. Dokumentacja proponowanych dopuszczalnych wielkości narażenia zawodowego

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Benzene. Documentation of proposed values of occupational exposure limits (OELs)
Języki publikacji
PL
Abstrakty
EN
Benzen jest bezbarwną lub lekko żółtą cieczą o charakterystycznym zapachu. Naturalnymi źródłami benzenu są gazy emitowane z wulkanów i pożarów lasów oraz produkty ropopochodne. Benzen stosuje się przede wszystkim jako rozpuszczalnik oraz materiał wyjściowy w syntezie wielu chemikaliów. W Polsce w 2020 r. 28 osób pracowało w narażeniu na benzen o stężeniach powyżej obowiązującej wartości NDS. Benzen działa narkotycznie w warunkach zatrucia ostrego. Ciekły działa drażniąco. Po narażeniu przewlekłym u ludzi obserwowano zmiany hematologiczne we krwi oraz nowotwory, w tym ostrą białaczkę szpikową. Podobne efekty obserwowano u zwierząt laboratoryjnych. Benzen i/lub jego metabolity wykazują działanie genotoksyczne. Takie działanie benzenu wykazano u ludzi zawodowo narażonych na związek o stężeniu <3,2 mg/m3(<1 ppm). Benzen nie jest teratogenem dla zwierząt. Jako wartość NDS dla benzenu proponuje się przyjąć stężenie rekomendowane w dyrektywie Parlamentu Europejskiego i Rady, zmieniającej dyrektywę 2004/37/WE, tj. 0,66 mg/m3. Ryzyko wystąpienia białaczki u pracowników zawodowo narażonych na benzen o stężeniu 0,66 mg/m3 mieści się w zakresie 2,7 · 10−4 ÷ 1˚10−3. Proponuje się także dodać notacje: „Carc. 1A” (substancja rakotwórcza kategorii zagrożenia 1A); „skóra” (wchłanianie substancji przez skórę może być tak samo istotne, jak przy narażeniu drogą oddechową); „Muta. 1B” (działanie mutagenne na komórki rozrodcze kategorii zagrożenia 1B). Jako biomarkery zawodowego narażenia na benzen zaproponowano stężenie benzenu 2,5 μg/l moczu oraz stężenie kwasu S-fenylomerkapturowego (S-PMA) na poziomie 9,0 μg/g kreatyniny w moczu. Zakres tematyczny artykułu obejmuje zagadnienia zdrowia oraz bezpieczeństwa i higieny środowiska pracy będące przedmiotem badań z zakresu nauk o zdrowiu i inżynierii środowiska.
EN
Benzene is a colorless to slightly yellow liquid with the characteristic odor. Gases emitted from volcanoes and forest fires as well as petroleum products are natural sources of benzene. It is used primarily as a solvent and a starting material in the synthesis of many chemicals. In 2020 Poland, 28 people were exposed to benzene in concentrations exceeding the current TLV value. Benzene is a narcotic under the severe poisoning conditions. The liquid is irritating. Haematological changes in the blood and neoplasms, including acute myeloid leukemia, have been observed in humans after chronic exposure. Similar effects were seen in laboratory animals. Benzene and/or its metabolites are genotoxic. Such an effect of benzene was demonstrated in people occupationally exposed to the compound at a concentration of < 3.2 mg/m³ (< 1 ppm). Benzene is not an animal teratogen. As the value of TLV for benzene, it is proposed to adopt the concentration recommended in the Directive of the European Parliament and of the Council amending Directive 2004/37/EC, i.e. 0.66 mg/m3 . The risk of leukemia at employees professionally exposed to benzene at a concentration of 0.66 mg/m3 is within the range from 2.7 • 10−4 to 1 • 10−3. It is also proposed to add the following notations: “Carc. 1A” (carcinogenic substance of hazard category 1A); “Skin” (the absorption of substances through the skin may be as important as for inhalation exposure); “Muta. 1B” (germ cell mutagenicity, hazard category 1B). Benzene concentration of 2.5 µg/l of urine and the concentration of S-phenylmercapturic acid (S-PMA) at the level of 9.0 µg/g of creatinine in urine were proposed as biomarkers of occupational exposure to benzene. This article discusses the problems of occupational safety and health, which are covered by health sciences and environmental engineering.
Rocznik
Strony
21--117
Opis fizyczny
Bibliogr. 390 poz., rys., tab.
Twórcy
  • Uniwersytet Medyczny w Łodzi 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
  • Uniwersytet Medyczny w Łodzi 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
  • Uniwersytet Medyczny w Łodzi 90-151 Łódź, ul. J. Muszyńskiego 1 POLAND
Bibliografia
  • 1. ACGIH, American Conference of Governmental Industrial Hygienists (1999). Guide to occupational exposure values.
  • 2. ACGIH, American Conference of Governmental Industrial Hygienists (2001a). Benzene. Recommended BEI.
  • 3. ACGIH, American Conference of Governmental Industrial Hygienists (2001b). Guide to occupational exposure values: benzene.
  • 4. ACGIH, American Conference of Governmental Industrial Hygienists (2012). Guide to occupational exposure values.
  • 5. Aksoy M. (1980). Different types of malignancies due to occupational exposure to benzene: a review of recent observations in Turkey. Environ. Res. 23, 181–190.
  • 6. Aksoy M. (1985a). Benzene as a leukemogenic and carcinogenic agent. Am. J. Ind. Med. 8, 9–20.
  • 7. Aksoy M. (1985b). Malignancies due to occupational exposure to benzene. Am. J. Ind. Med. 7, 395–402.
  • 8. Aksoy M., Erdem S., Dinçol G. (1974). Leukemia in shoe-workers exposed chronically to benzene. Blood 44, 837–841.
  • 9. Aksoy M., Erdem S., Dinçol G. (1976). Types of leukemia in chronic benzene poisoning: a study in thirty-four patients. Acta Haematol. 55, 65–72.
  • 10. Amin R.P., Witz G. (2001). DNA-protein crosslink and DNA strand break formation in HL-60 cells treated with trans, trans-muconaldehyde, hydroquinone and their mixtures. Int. J. Toxicol. 20(2), 69–80.
  • 11. Anderson D., Richardson C.R. (1981). Issues relevant to the assessment of chemically induced chromosome damage in vivo and their relationship to chemical mutagenesis. Mutat. Res. 90(3), 261–272.
  • 12. Andrews L.S., Lee E.W., Witmer C.M. i in. (1977). Effects of toluene on the metabolism, disposition and hematopoietic toxicity of [3H]benzene. Biochem. Pharmacol. 26(4), 293– 300.
  • 13. Angelini S., Kumar R., Bermejo J.L. i in. (2011). Exposure to low environmental levels of benzene: evaluation of micronucleus frequencies and S-phenylmercapturic acid excretion in relation to polymorphisms in genes encoding metabolic enzymes. Mutat. Res. 719(1–2), 7–13 [cyt. za: BEI 2020].
  • 14. Arfellini G., Grilli S., Colacci A. i in. (1985). In vivo and in vitro binding of benzene to nucleic acids and proteins of various rat and mouse organs. Cancer Lett. 28(2), 159–168.
  • 15. Armstrong M.J., Galloway S.M. (1993). Micronuclei induced in peripheral blood of E μ-PIM-1 transgenic mice by chronic oral treatment with 2-acetylaminofluorene or benzene but not with diethyl-nitrosamine or 1,2-dichloroethane. Mutat. Res. 302(1), 61–70.
  • 16. ATSDR, Agency for Toxic Substances and Disease Registry (2007). Toxicological profile for benzene. U.S. Public Health Service, U.S. Department of Health and Human Services, Atlanta, GA 2007.
  • 17. ATSDR, Agency for Toxic Substances and Disease Registry (2015). Addendum to the toxicological profile for benzene. ATSDR Division of Toxicology and Human Health Sciences. Atlanta, GA 2015.
  • 18. Aubrecht J., Rugo R., Schiestl R.H. (1995). Carcinogens induce intrachromosomal recombination in human cells. Carcinogenesis 16(11), 2841–2846.
  • 19. Axelsson G., Lütz C., Rylander R. (1984). Exposure to solvents and outcome of pregnancy in university laboratory employees. Br. J. Ind. Med. 41(3), 305–312 [cyt. za: EPA 2002].
  • 20. Baarson K., Snyder C.A., Green J. i in. (1982). The hematotoxic effects of inhaled benzene on peripheral blood, bone marrow, and spleen cells are increased by ingested ethanol. Toxicol. Appl. Pharmacol. 64(3), 393–404 [cyt. za: ATSDR 2007].
  • 21. Barale R., Giorgelli F., Migliore L. i in. (1985). Benzene induces micronuclei in circulating erythrocytes of chronically treated mice. Mutat. Res. 144(3), 193–196.
  • 22. Bartczak A., Kline S.A., Yu R. i in. (1994). Evaluation of assay for the identification and quantitation of muconic acid, a benzene metabolite in human urine. J. Toxicol. Environ. Health 42(3), 245–258.
  • 23. Baslo A., Aksoy M. (1982). Neurological abnormalitis in chronic benzene poisoning: a study of six patients with aplastic anemia and two with preleukemia. Environ. Res. 27(2), 457– 465 [cyt. za: Lebrecht i in. 2003].
  • 24. Bassig B.A., Zhang L., Cawthon R.M. i in. (2014). Alterations in leukocyte telomere length in workers occupationally exposed to benzene. Environ. Mol. Mutagen. 55(8), 673–678.
  • 25. Bassig B.A., Friesen M.C., Vermeulen R. i in. (2015). Occupational exposure to benzene and non-Hodgkin lymphoma in a population-based cohort: the Shanghai Women’s Health Study. Environ. Health Perspect. 123(10), 971–977.
  • 26. Basso E., Cevoli C., Papacchini M. i in. (2011). Cytogenetic biomonitoring on a group of petroleum refinery workers. Environ. Mol. Mutagen. 52(6), 440–447.
  • 27. BAuA, Bundesanstalt für Arbeitsschutz und Arbeitmedizin (2013). The risk-based concept for carcinogenic substances developed by the Committee for Hazardous Substances. Dortmund [cyt. za: IARC 2018].
  • 28. Bechtold W.E., Lucier G., Birnbaum L.S. i in. (1991). Muconic acid determinations in urine as a biological exposure index for workers occupationally exposed to benzene. Am. Ind. Hyg. Assoc. J. 52(11), 473–478.
  • 29. Bechtold W.E., Henderson R.F. (1993). Biomarkers of human exposure to benzene. J. Toxicol. Environ. Health 40(2–3), 377–386.
  • 30. BEI (2020). Biological Exposure Index (BEI) review. Benzene (CAS No.: 71-43-2). WorkSafe New Zealand.
  • 31. Bernauer U., Vieth B., Ellrich R. i in. (2000). CYP2E1 expression in bone marrow and its intra- and interspecies variability: approaches for a more reliable extrapolation from one species to another in the risk assessment of chemicals. Arch. Toxicol. 73(12), 618–624.
  • 32. Bertazzi P.A., Zocchetti C. (1991). Quantitative estimates of leukaemia risk associated with benzene exposure. SEG/CDO/ C1, Supplement F [cyt. za: SCOEL 1991].
  • 33. Bodell W.J., Levay G., Pongracz K. (1993). Investigation of benzene-DNA adducts and their detection in human bone marrow. Environ. Health Perspect. 99, 241–244.
  • 34. Bois F.Y., Paxman D.G. (1992). An analysis of exposure rate effects for benzene using a physiologically based pharmacokinetic model. Regul. Toxicol. Pharmacol. 15(2), 122–136.
  • 35. Bond G.G., McLaren E.A., Baldwin C.L. i in. (1986). An update of mortality among workers exposed to benzene. Br. J. Ind. Med. 43(10), 685– 691.
  • 36. Bond G.G., McLaren E.A., Cartmill J.B. i in. (1987). Cause- -specific mortality among male chemical workers. Am. J. Ind. Med. 12(4), 353–383.
  • 37. Bordarier C., Robain O., Ponsot G. (1991). Bilateral porencephalic defect in a newborn after injection of benzol during pregnancy. Brain Dev. 13(2), 126–129 [cyt. za: EPA 2002].
  • 38. Brunmark A., Cadenas E. (1988). Reductive addition of glutathione to p-benzoquinone, 2-hydroxy-p-benzoquinone, and p-benzoquinone epoxides: effect of hydroxy- and glutathionyl substituents on p-benzoquinone autooxidation. Chem. Biol. Interact. 68(3–4), 273–298.
  • 39. Capleton A.C., Levy L.S. (2005). An overview of occupational benzene exposures and occupational exposure limits in Europe and North America. Chem. Biol. Interact. 153–154, 43–53.
  • 40. Carbonari D., Chiarella P., A. Mansi i in. (2016). Biomarkers of susceptibility following benzene exposure: influence of genetic polymorphisms on benzene metabolism and health effects. Biomark. Med. 10(2), 145–163.
  • 41. Carere A., Antoccia A., Crebelli R. i in. (1995). Genetic effects of petroleum fuels: cytogenetic monitoring of gasoline station attendants. Mutat. Res. Mol. Mech. Mutagen. 332(1–2), 17–26.
  • 42. Carl Roth (2019). Karta charakterystyki: benzen.
  • 43. Carrieri M., Tranfo G., Pigini D. i in. (2010). Correlation between environmental and biological monitoring of exposure to benzene in petrochemical industry operators. Toxicol. Lett. 192(1), 17–21 [cyt. za: BEI 2020].
  • 44. ChemIDplus (2021). Benzene.
  • 45. Chen H., Eastmond D.A. (1995). Topoisomerase inhibition by phenolic metabolites: A potential mechanism for benzene’s clastogenic effects. Carcinogenesis 16(10), 2301–2307.
  • 46. Chen C.S., Hseu Y.C., Liang S.H. i in. (2007). Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay. J. Hazard. Mater. 153(1–2), 351–356.
  • 47. Chepiga T.A., Yang C.S., Snyder R. (1990). Benzene metabolism by two purified, reconstituted rat hepatic mixed function oxidase systems. Adv. Exp. Med. Biol. 283, 261–265.
  • 48. Choy W.N., MacGregor J.T., Shelby M.D. i in. (1985). Induction of micronuclei by benzene in B6C3F1 mice: retrospective analysis of peripheral blood smears from the NTP carcinogenesis bioassay. Mutat. Res. 143(1–2), 55–59.
  • 49. Ciranni R., Barale R., Marrazzini A. i in. (1988). Benzene and the genotoxicity of its metabolites: I. Transplacental activity in mouse fetuses and in their dams. Mutat. Res. 208(1), 61–67.
  • 50. Clavel J., Conso F., Limasset J.C. i in. (1996). Hairy cell leukaemia and occupational exposure to benzene. Occup. Environ. Med. 53(8), 533–539.
  • 51. Collins J.J., Conner P., Friedlander B.R. i in. (1991). A study of the hematologic effects of chronic low-level exposure to benzene. J. Occup. Med. 33(5), 619–626.
  • 52. Collins J.J., Irealand B.K., Easterday P.A. i in. (1997). Evaluation of lymphopenia among workers with low-level benzene exposure and the utility of routine data collection. J. Occup. Environ. Med. 39(3), 232–237.
  • 53. Collins J.J., Anteau S.E., Swaen G.M. i in. (2015). Lymphatic and hematopoietic cancers among benzene-exposed workers. J. Occup. Environ. Med. 57(2), 159–163.
  • 54. Corti M., Snyder C.A. (1996). Influences of gender, development, pregnancy and ethanol consumption on the hematotoxicity of inhaled 10 ppm benzene. Arch. Toxicol. 70(3–4), 209–217.
  • 55. Cox L.A. (1991). Biological basis of chemical carcinogenesis: insights from benzene. Risk Anal. 11(3), 453–464.
  • 56. Creek M.R., Mani C., Vogel J.S. i in. (1997). Tissue distribution and macromolecular binding of extremely low doses of [14C]-benzene in B6C3F1 mice. Carcinogenesis 18(12), 2421–2427.
  • 57. Cronkite E.P., Drew R.T., Inoue T. i in. (1985). Benzene hematotoxicity and leukemogenesis. Am. J. Ind. Med. 7(5–6), 447–456.
  • 58. Cronkite E.P., Drew R.T., Inoue T. i in. (1989). Hematotoxicity and carcinogenicity of inhaled benzene. Environ. Health Perspect. 82, 97–108.
  • 59. Crosignani P., Tittarelli A., Borgini A. i in. (2004). Childhood leukemia and road traffic: a population-based case-control study. Int. J. Cancer 108(4), 596–599.
  • 60. Crump K.S. (1992). Risk assessment of benzene‐induced leukemia: a review. [W:] Oncogene and transgenics correlates of cancer risk assessment. [Red.:] C. Zervos. New York, Plenum Press, pp. 241–262 [cyt. za: Crump 1994].
  • 61. Crump K.S. (1994). Risk of benzene‐induced leukemia: a sensitivity analysis of the pliofilm cohort with additional follow‐ up and new exposure estimates. J. Toxicol. Environ. Health 42(2), 219–242 [cyt. za: ACGIH 2001].
  • 62. Crump K.S., Allen B.C. (1984). Quantitative estimates of risk of leukemia from occupational exposure to benzene. Prepared for the U.S. Occupational Safety and Health Administration by Science Research Systems, Inc., Ruston, LA [cyt. za: ACGIH 2001].
  • 63. D’Andrea M.A., Reddy G.K. (2018). Health risks associated with benzene exposure in children: a systematic review. Glob. Pediatr. Health 5, 1–10.
  • 64. Dean B.J. (1985). Recent findings on the genetic toxicology of benzene, toluene, xylenes and phenols. Mutat. Res. 154(3), 153–181.
  • 65. DECOS, Dutch Expert Committee on Occupational Safety, a Committee of the Health Council of the Netherlands (2014). Benzene. Health-based recommended occupational exposure limit. No. 2014/03. The Hague, February 21.
  • 66. Decouflé P., Blattner W.A., Blair A. (1983). Mortality among chemical workers exposed to benzene and other agents. Environ. Res. 30(1), 16–25.
  • 67. DFG, Deutsche Forschungsgemeinschaft (1999). List of MAK and BAT Values 1999: Maximum Concentrations and Biological Tolerance Values at the Workplace, Report No. 35, p. 174.
  • 68. DFG, Deutsche Forschungsgemeinschaft (2019). List of MAK and BAT Values 2019: Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Report 55. DOI:10.1002/9783527826889
  • 69. DFG, Deutsche Forschungsgemeinschaft (2020). List of MAK and BAT Values 2020: Permanent Senate Commission for the Investigation of Health Hazards of Chemical Compounds in the Work Area, Report 56. DOI: 10.34865/mbwl_2020_eng
  • 70. Díaz M., Reiser A., Braier L. i in. (1980). Studies on benzene mutagenesis: I. The micronucleus test. Experientia 36(1), 297–299.
  • 71. Ding X-J., Li Y., Ding Y. i in. (1983). Chromosome changes in patients with chronic benzene poisoning. Chin. Med. J. (Engl.) 96(9), 681–685.
  • 72. Douglas G.R., Blakey D.H., Liu-Lee V.W. i in. (1985). Alkaline sucrose sedimentation, sister-chromatid exchange and micronucleus assays in CHO cells. Prog. Mutat. Res. 5, 359–366.
  • 73. Dowty B.J., Laster J.L., Storer J. (1976). The transplacental migration and accumulation in blood of volatile organic constituents. Pediatr. Res. 10(7), 696–701.
  • 74. Dyrektywa 2004/37/WE Parlamentu Europejskiego i Rady z dnia 29 kwietnia 2004 r. w sprawie ochrony pracowników przed zagrożeniem dotyczącym narażenia na działanie czynników rakotwórczych lub mutagenów podczas pracy (szósta dyrektywa szczegółowa w rozumieniu art. 16 ust. 1 dyrektywy Rady 89/391/EWG).
  • 75. Dyrektywa 2022/431 zmieniajaca dyrektywę 2004/37/WE w sprawie ochrony pracowników przed zagrożeniem dotyczącym narażenia na działanie czynników rakotwórczych lub mutagennych podczas pracy. Dyrektywa Parlamentu Europejskiego i Rady (UE) 2022/431 z dnia 9 marca 2022 r. zmieniająca dyrektywę 2004/37/WE. Dz. Urz. UE z 16.3.2022 (L/88).
  • 76. Eastmond D.A., Smith M.T., Irons R.D. (1987). An interaction of benzene metabolites reproduces the myelotoxicity observed with benzene exposure. Toxicol. Appl. Pharmacol. 91(1), 85–95.
  • 77. Eastmond D.A., Rupa D.S., Hasegawa L.S. (1994). Detection of hyperdiploidy and chromosome breakage in interphase human lymphocytes following exposure to the benzene metabolite hydroquinone using multicolor fluorescence in situ hybridization with DNA probes. Mutat. Res. 322(1), 9–20.
  • 78. Eastmond D.A., Schuler M., Frantz C. i in. (2001). Characterization and mechanisms of chromosomal alterations induced by benzene in mice and humans. Research report. Health Effects Institute. No. 103 [cyt. za: Schnatter i in. 2020].
  • 79. ECHA, European Chemicals Agency (2018a). Committee for Risk Assessment RAC: Opinion on scientific evaluation of occupational exposure limits for benzene. https://echa.europa. eu/documents/10162/13641/benzene_opinion_en.pdf/4fec9aac-9ed5-2aae-7b70-5226705358c7 [data dostępu: 16.05.2022].
  • 80. ECHA, European Chemicals Agency (2018b). ANNEX 1. Background document in support of the Committee for Risk Assessment (RAC) evaluation of limit values for benzene in the workplace. ECHA/RAC/A77-0-0000001412-86-187/F.
  • 81. Edokpolo B., Yu Q.J., Connell D. (2019). Use of toxicant sensitivity distributions (TSD) for development of exposure guidelines for risk to human health from benzene. Environ. Pollut. 250, 386–396.
  • 82. EHC (1993). Environmental Health Criteria 150. Benzene.
  • 83. EPA, Environmental Protection Agency (2002). Toxicological review of benzene (noncancer effects) (CAS No. 71-43-2).
  • 84. Erexson G.L.,Wilme J.L., Kligerman A.D. (1985). Sister chromatid exchange induction in human lymphocytes exposed to benzene and its metabolites in vitro. Cancer Res. 45(6), 2471–2477.
  • 85. Erexson G.L., Wilmer J.L., Steinhagen W.H. i in. (1986). Induction of cytogenetic damage in rodents after short-term inhalation of benzene. Environ. Mutagen. 8(1), 29–40.
  • 86. EU RAR (2008). European Union Risk Assessment Report: Benzene. Ispra, Italy, European Commission Joint Research Center Institute for Health and Consumer Protection (JRC- -IHCP).
  • 87. Farris G.M., Everitt J.I., Irons R.D. i in. (1993). Carcinogenicity of inhaled benzene in CBA mice. Fundam. Appl. Toxicol. 20(4), 503–507.
  • 88. Farris G.M., Robinson S.N., Gaido K.W i in. (1997a). Benzene- -induced hematotoxicity and bone marrow compensation in B6C3F1 mice. Fundam. Appl. Toxicol. 36(2), 119–129.
  • 89. Farris G.M., Robinson S.N., Wong B.A. i in. (1997b). Effects of benzene on splenic, thymic, and femoral lymphocytes in mice. Toxicology 118(2–3), 137–148.
  • 90. Fenga C., Gangemi S., Costa C. (2016). Benzene exposure is associated with epigenetic changes (Review). Mol. Med. Rep. 13(4), 3401–3405.
  • 91. Fracasso M.E., Doria D., Bartolucci G.B. i in. (2010). Low air levels of benzene: correlation between biomarkers of exposure and genotoxic effects. Toxicol. Lett. 192(1), 22–28.
  • 92. Franz T.J. (1983). Percutaneous absorption on the relevance of in vitro data. J. Invest. Dermatol. 64(3), 190–195.
  • 93. Franz T.J. (1984). Percutaneous absorption of benzene. [W:] Applied toxicology of petroleum hydrocarbons (Advances in modern environmental toxicology. Vol. VI). [Red.:] H.N. MacFarland, C.E. Holdsworth, J.A. MacGregor. Princeton, NJ, Princeton Scientific Publishers, pp. 61–70 [cyt. za: EPA 2002].
  • 94. Frantz C.E., Chen H., Eastmond D.A. (1996). Inhibition of human topoisomerase II in vitro by bioactive benzene metabolites. Environ. Health Perspect. 104(Suppl 6), 1319–1323.
  • 95. French J.E., Gatti D.M., Morgan D.L. i in. (2015). Diversity outbred mice identify population-based exposure thresholds and genetic factors that influence benzene-induced genotoxicity. Environ. Health Perspect. 123(3), 237–245.
  • 96. Funes-Cravioto F., Zapata-Gayon C., Kolmodin-Hedman B. i in. (1977). Chromosome aberrations and sister chromatid exchange in workers in chemical laboratories and a rotoprinting factory and in children of women laboratory workers. Lancet 2(8033), 322–325 [cyt. za: EPA 2002].
  • 97. Gad-El Karim M.M., Ramanujam V.M.S., Legator M.S. (1985). trans,trans-Muconic acid, an open-chain urinary metabolite of benzene in mice: quantification by high-pressure liquid chromatography. Xenobiotica 15(3), 211–220.
  • 98. Ganousis L.G., Goon D., Zyglewska T. i in. (1992). Cell-specific metabolism in mouse bone marrow stroma: studies of activation and detoxification of benzene metabolites. Mol. Pharmacol. 42(6), 1118–1125.
  • 99. Garte S., Popov T., Georgieva T. i in. (2005). Biomarkers of exposure and effect in Bulgarian petrochemical workers exposed to benzene. Chem. Biol. Interact. 153–154, 247–251.
  • 100. Genter M.B., Reico L. (1994). Absence of detectable P450 2E1 in bone marrow of B6C3F1 mice: relevance to butadiene-induced bone marrow toxicity. Fundam. Appl. Toxicol. 22(3), 469–473.
  • 101. Ghantous H., Danielsson B.R.G. (1986). Placental transfer and distribution of toluene, xylene, and benzene, and their meta-bolites during gestation in mice. Biol. Res. Pregnancy Perinatol. 7(3), 98–105.
  • 102. Ghittori S., Fiorentino M.L., Maestri L. i in. (1993). Urinary excretion of unmetabolized benzene as an indicator of benzene exposure. J. Toxicol. Environ. Health 38(3), 233–243.
  • 103. Ghittori S., Maestri L., Fiorentino M.L. i in. (1995). Evaluation of occupational exposure to benzene by urinalysis. Int. Arch. Occup. Environ. Health 67(3), 195–200 [cyt. za: BEI 2020].
  • 104. GIS, Główny Inspektorat Sanitarny (2021). Departament Higieny Środowiska, Warszawa.
  • 105. Glass D.C., Schnatter A.R., Tang G. i in. (2014). Risk of myeloproliferative disease and chronic myeloid leukaemia following exposure to low-level benzene in a nested case-control study of petroleum workers. Occup. Environ. Med. 71(4), 266–274.
  • 106. Glatt H., Padykula R., Berchtold G.A. i in. (1989). Multiple activation pathways of benzene leading to products with varying genotoxic characteristics. Environ. Health Perspect. 82, 81–89.
  • 107. Glatt H., Witz G. (1990). Studies on the induction of gene mutations in bacterial and mammalian cells by the ringopened benzene metabolites trans,trans-muconaldehyde and trans,trans-muconic acid. Mutagenesis 5(3), 263–266.
  • 108. Glauert H.P., Kennan W.S., Sattler G.L. i in. (1985). Assays to measure the induction of unscheduled DNA synthesis in cultured hepatocytes. [W:] Progress in mutation research, Vol. 5. Evaluation of short-term tests for carcinogens: report of the International Programme on Chemical Safety’s collaborative study on in vitro assays. [Red.:] J. Ashby, F.J. de Serres, M. Draper i in. Amsterdam, Elsevier, pp. 371–373.
  • 109. Goon D., Cheng X., Ruth J.A. i in. (1992). Metabolism of trans,trans-muconaldehyde by aldehyde and alcohol dehydrogenases: identification of a novel metabolite. Toxicol. Appl. Pharmacol. 114(1), 147–155.
  • 110. Gosepath J., Grebneva N., Brieger J. i in. (2003). Evaluation of inflammatory reactions and genotoxic effects after exposure of nasal respiratory epithelia to benzene. ORL J. Otorhinolaryngol. Relat. Spec. 65(6), 348–352.
  • 111. Green J.D., Leong B.K., Laskin S. (1978). Inhaled benzene fetotoxicity in rats. Toxicol. Appl. Pharmacol. 46(1), 9–18 [cyt. za: DECOS 2014].
  • 112. Guénel P., Imbernon E., Chevalier A. i in. (2002). Leukemia in relation to occupational exposures to benzene and other agents: a case-control study nested in a cohort of gas and electric utility workers. Am. J. Ind. Med. 42(2), 87–97.
  • 113. Guo H., Ahn S., Zhang L. (2020). Benzene-associated immunosuppression and chronic inflammation in humans: a systematic review. Occup. Environ. Med. 78(5), 1–8.
  • 114. Gut I., Terelius Y., Frantík E. i in. (1993). Exposure to various benzene derivatives differently induces cytochromes P450 2B1 and P450 2E1 in rat liver. Arch. Toxicol. 67(4), 237–243.
  • 115. Hartwig A. (2010). The role of DNA repair in benzene-induced carcinogenesis. Chem. Biol. Interact. 184(1–2), 269–72.
  • 116. Hatakeyama Y., Nakajima E., Atai H. i in. (1992). Effects of benzene in a micronucleus test on peripheral blood utilizing acridine orange-coated slides. Mutat. Res. 278(2–3), 193–195.
  • 117. Hayes R.B., Yin S.N., Dosemeci M. i in. (1996). Mortality among benzene-exposed workers in China. Environ. Health Perspect. 104(Suppl 6), 1349–1352.
  • 118. Heck J.E., Park A.S., Qiu J. (2014). Risk of leukemia in relation to exposure to ambient air toxics in pregnancy and early childhood. Int. J. Hyg. Environ. Health 217(6), 662–668.
  • 119. Heck J.E., He D., Contreras Z.A. i in. (2019). Parental occupational exposure to benzene and the risk of childhood and adolescent acute lymphoblastic leukaemia: a populationbased study. Occup. Environ. Med. 76(8), 527–529.
  • 120. Hedli C.C., Rao N.R., Reuhl K.R. i in. (1996). Effects of benzene metabolite treatment on granulocytic differentiation and DNA adduct formation in HL-60 cells. Arch. Toxicol. 70(3– 4), 135–144.
  • 121. Henderson R.F. (1996). Species differences in the metabolism of benzene. Environ. Health Perspect. 104(Suppl 6), 1173– 1175.
  • 122. Henderson R.F., Sabourin P.J., Medinsky M.A. i in. (1992). Benzene dosimetry in experimental animals: relevance for risk assessment. Prog. Clin. Biol. Res. 374, 93–05.
  • 123. Hendrickson H.P., Sahafayen M., Bell M.A. i in. (1994). Relationship of flavonoid oxidation potential and effect on rat hepatic microsomal metabolism of benzene and phenol. J. Pharm. Biomed. Anal. 12(3), 335–341 [cyt. za: ATSDR 2007].
  • 124. Henschler R., Glatt H.R. (1995). Induction of cytochrome P4501a1 in haemopoietic stem cells by hydroxylated metabolites of benzene. Toxicol. In Vitro 9(4), 453–457.
  • 125. Hiraku Y., Kawanishi S. (1996). Oxidative DNA damage and apoptosis induced by benzene metabolites. Cancer Res. 56(22), 5172–5178.
  • 126. Holmberg P.C. (1979). Central nervous system defects in children born to mothers exposed to organic solvents during pregnancy. Lancet 2(8135), 177–179 [cyt. za: EPA 2002].
  • 127. Houot J., Marquant F., Goujon S. i in. (2015). Residential proximity to heavy-traffic roads, benzene exposure, and childhood leukemia – the GEOCAP Study, 2002-2007. Am. J. Epidemiol. 182(8), 685–693.
  • 128. HSDB, Hazardous Substances Data Bank (2007). Benzene. National Library of Medicine.
  • 129. Huang X.-Y. (1991). Influence on benzene and toluene to reproductive function of female workers in leather shoemaking industry. Chin. J. Prev. Med. 25, 89–91 [cyt. za: EPA 2002].
  • 130. Huff J.E., Haseman J.K., DeMarini D.M. i in. (1989). Multiple-site carcinogenicity of benzene in Fischer 344 rats and B6C3F1 mice. Environ. Health Perspect. 82, 125–163.
  • 131. Hunter C.G. (1966). Aromatic solvents. Ann. Occup. Hyg. 9(4), 191–198.
  • 132. Hunter C.G. (1968). Solvents with reference to studies on the pharmacodynamics of benzene. Proc. R. Soc. Med. 61(9), 913–915.
  • 133. Hunter C.G., Blair D. (1972). Benzene: pharmacokinetic studies in man. Ann. Occup. Hyg. 15(2), 193–201.
  • 134. IARC, International Agency for Research on Cancer (1982). Summaries & Evaluations. Benzene. 29, 93.
  • 135. IARC, International Agency for Research on Cancer (1989). Monographs on the evaluation of the carcinogenic risk of chemicals to humans. World Health Organization, International Agency for Research on Cancer, Geneva, V47 99.
  • 136. IARC, International Agency for Research on Cancer (2018). Benzene. Monographs on the evaluation of carcinogenic risks to humans, Vol. 120.
  • 137. Ibrahim K.S., Saleh Z.A., Farrag A.-R.H. i in. (2011). Protective effects of zinc and selenium against benzene toxicity in rats. Toxicol. Ind. Health 27(6), 537–545.
  • 138. Ikeda M., Ohtsuji H., Imamura T. (1972). In vivo suppression of benzene and styrene oxidation by co-administered toluene in rats and effects of phenobarbital. Xenobiotica 2(2), 101–106 [cyt. za: ATSDR 2007].
  • 139. Infante P.F., Rinsky R.A., Wagoner J.K. i in. (1977). Leukaemia in benzene workers. Lancet 2(8028), 76–78.
  • 140. Inoue O., Seiji K., Kasahara M. i in. (1986). Quantitative relation of urinary phenol levels to breathzone benzene concentrations: a factory survey. Br. J. Ind. Med. 43(10), 692–697.
  • 141. Inoue O., Seiji K., Watanabe T. i in. (1988). Mutual metabolic suppression between benzene and toluene in man. Int. Arch. Occup. Environ. Health 60(1), 15–20 [cyt. za: ATSDR 2007].
  • 142. IPCS (1999). Benzene. Geneva, WHO, International Programme on Chemical Safety. Poisons Information Monograph 63.
  • 143. IPCS/INCHEM (1993). Komputerowa baza danych [cyt. za: Lebrecht i in. 2003].
  • 144. Ireland B., Collins J.J., Buckley C.F. i in. (1997). Cancer mortality among workers with benzene exposure. Epidemiology 8(3), 318–320.
  • 145. Irons R.D., Dent J.G., Baker T.S. i in. (1980). Benzene is metabolized and covalently bound in bone marrow in situ. Chem. Biol. Interact. 30(2), 241–245.
  • 146. Irons R.D., Neptun D.A. (1980). Effects of the principle hydroxy-metabolites of benzene on microtubule polymerization. Arch. Toxicol. 45(4), 297–305.
  • 147. Jakasa I., Kezic S., Boogaard P.J. (2015). Dermal uptake of petroleum substances. Toxicol. Lett. 235(2), 123–139.
  • 148. Janitz A.E., Campbell J.E., Magzamen S. i in. (2017). Benzene and childhood acute leukemia in Oklahoma. Environ. Res. 158, 167–173.
  • 149. Jerina D., Daly J., Witkop B. i in. (1968). Role of arene oxide-oxepin system in the metabolism of aromatic substances: I. In vitro conversion of benzene oxide to a premercapturic acid and a dihydrodiol. Arch. Biochem. Biophys. 128, 176–183.
  • 150. Ji Z., Weldon R.H., Marchetti F. i in. (2012). Comparison of aneuploidies of chromosomes 21, X, and Y in the blood lymphocytes and sperm of workers exposed to benzene. Environ. Mol. Mutagen. 53(3), 218–226.
  • 151. Johansson I., Ingelman-Sundberg M. (1988). Benzene metabolism by ethanol-, acetone-, and benzene-inducible cytochrome P-450(IIE1) in rat and rabbit liver microsomes. Cancer Res. 48(19), 5387–5390.
  • 152. Kaden D.A., Hites R.A., Thilly W.G. (1979). Mutagenicity of soot and associated polycyclic aromatic hydrocarbons to Salmonella typhimurium. Cancer Res. 39(10), 4152–4159.
  • 153. Kahn H., Muzyka V. (1973). The chronic effect of benzene on porphyrin metabolism. Work Environ. Health 10, 140–143.
  • 154. Kalf G.F. (1987). Recent advances in the metabolism and toxicity of benzene. Crit. Rev. Toxicol. 18(2), 141–159.
  • 155. Kalf G.F., Rushmore T., Snyder R. (1982). Benzene inhibits RNA synthesis in mitochondria from liver and bone marrow. Chem. Biol. Interact. 42(3), 353–370.
  • 156. Kalnas J., Teitelbaum D.T. (2000). Dermal absorption of benzene: implications for work practices and regulations. Int. J. Occup. Environ. Health 6(2), 114–121.
  • 157. Kašuba V., Rozgaj R., Sentija K. (2000). Cytogenic changes in subjects occupationally exposed to benzene. Chemosphere 40(3), 307–310.
  • 158. Katukam V., Kulakarni M., Syed R. i in. (2012). Effect of benzene exposure on fertility of male workers employed in bulk drug industries. Genet. Test. Mol. Biomarkers 16(6), 592–597.
  • 159. Kawasaki Y., Hirabayashi Y., Kaneko T. i in. (2009). Benzene- -induced hematopoietic neoplasms including myeloid leukemia in Trp53-deficient C57BL/6 and C3H/He mice. Toxicol. Sci. 110(2), 293–306.
  • 160. Keller K.A., Snyder C.A. (1988). Mice exposed in utero to 20 ppm benzene exhibit altered numbers of recognizable hematopoietic cells up to seven weeks after exposure. Fundam. Appl. Toxicol. 10(2), 224–232.
  • 161. Kenyon E.M., Seeley M.E., Janzen D. i in. (1995). Dose-, route-, and sex-dependent urinary excretion of phenol metabolites in B6C3F1 mice. J. Toxicol. Environ. Health 44(2), 219–233.
  • 162. Kim S.Y., Choi J.K., Cho Y.H. i in. (2004). Chromosomal aberrations in workers exposed to low levels of benzene: association with genetic polymorphisms. Pharmacogenetics 14(7), 453–463.
  • 163. Kim Y.J., Choi J.Y., Paek D. i in. (2008). Association of the NQO1, MPO, and XRCC1 polymorphisms and chromosome damage among workers at a petroleum refinery. J. Toxicol. Environ. Health A 71(5), 333–341.
  • 164. Kim Y.J., Choi J.Y., Cho Y.H. i in. (2010). Micronucleus-centromere assay in workers occupationally exposed to low level of benzene. Hum. Exp. Toxicol. 29(5), 343–350.
  • 165. Kirkeleit J., Riise T., Gjertsen B.T., Moen B.E.i in. (2008a). Effects of benzene on human hematopoiesis (a). Open Hematol. J. 2, 87–102.
  • 166. Kirkeleit J., Riise T., Bråtveit M. i in. (2008b). Increased risk of acute myelogenous leukemia and multiple myeloma in a historical cohort of upstream petroleum workers exposed to crude oil. Cancer Causes Control 19(1), 13–23.
  • 167. Kissling M., Speck B. (1972). Further studies on experimental benzene induced aplastic anemia. Blut 25(2), 97–103.
  • 168. Kissling M., Speck B. (1973). Chromosome aberrations in experimental benzene intoxication. Helv. Med. Acta 36(1), 59–66.
  • 169. Koh D.-H., Jeon H.-K., Lee S.-G. i in. (2015). The relationship between low-level benzene exposure and blood cell counts in Korean workers. Occup. Environ. Med. 72(6), 421–427.
  • 170. Kok P.W., Ong C.N. (1994). Blood and urinary benzene determined by headspace gas chromatography with photoionization detection: application in biological monitoring of lowlevel nonoccupational exposure. Int. Arch. Occup. Environ. Health 66(3), 195–201.
  • 171. Kolachana P., Subrahmanyam V.V., Meyer K.B. i in. (1993). Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Cancer Res. 53(5), 1023–1026.
  • 172. Koop D.R., Laethem C.L. (1992). Inhibition of rabbit microsomal cytochrome P-450 2E1-dependent p-nitrophenol hydroxylation by substituted benzene derivatives. Drug Metab. Dispos. 20(5), 775–777.
  • 173. Kraut A., Lilis R., Marcus M. i in. (1988). Neurotoxic effects of solvent exposure on sewage treatment workers. Arch. Environ. Health 43(4), 263–268 [cyt. za: Lebrecht i in. 2003].
  • 174. Kuna R.A., Kapp R.W. Jr (1981). The embryotoxic/teratogenic potential of benzene vapor in rats. Toxicol. Appl. Pharmacol. 57(1), 1–7 [cyt. za: DECOS 2014].
  • 175. Kuna R., Nicolich M., Schroeder R. i in. (1992). A female rat fertility study with inhaled benzene. J. Am. Coll. Toxicol. 11(3), 275–282 [cyt. za: EPA 2002].
  • 176. Kupczewska-Dobecka M., Czerczak S., Konieczko K. (2019). Wełna mineralna. Zagrożenia dla użytkowników, stan prawny i zasady bezpiecznego postępowania. Instytut Medycyny Pracy, Łódź.
  • 177. Lagorio S., Tagesson C., Forastiere F. i in. (1994). Exposure to benzene and urinary concentrations of 8-hydroxydeoxyguanosine, a biological marker of oxidative damage to DNA. Occup. Environ. Med. 51(11), 739–743.
  • 178. Laitinen J., Kangas J., Pekari K. i in. (1994). Short time exposure to benzene and gasoline at garages. Chemosphere 28(1), 197–205.
  • 179. Lakhanisky T.H., Hendrickx B. (1985). Induction of DNA single-strand breaks in CHO cells in culture. Prog. Mutat. Res. 5, 367–370.
  • 180. Lan Q., Zhang L., Li G. i in. (2004). Hematotoxicity in workers exposed to low levels of benzene. Science 306(5702), 1774– 1776.
  • 181. Latrian L., Goldstein B.D., Witz G. (1986). Formation of muconaldehyde, an open-ring metabolite of benzene, in mouse liver microsomes: an additional pathway for toxic metabolites. Proc. Natl. Acad. Sci. USA 83(21), 8356–8360.
  • 182. Lebrecht G., Czerczak S., Szadkowska-Stańczyk I. i in. (2001). Benzen. Wytyczne Szacowania Ryzyka Zdrowotnego 12, 5–45.
  • 183. Lebrecht G., Czerczak S., Szymczak W. (2003). Benzen. Dokumentacja proponowanych wartości dopuszczalnych poziomów narażenia zawodowego. Podst. Metod. Ocen. Srod. Pr. 1 (35), 5–60.
  • 184. Legathe A., Hoener B.A., Tozer T.N. (1994). Pharmacokinetic interaction between benzene metabolites, phenol and hydroquinone, in B6C3F1 mice. Toxicol. Appl. Pharmacol. 124(1), 131–138.
  • 185. Lévay G., Bodell W.J. (1992). Potentiation of DNA adduct formation in HL-60 cells by combinations of benzene metabolites. Proc. Natl. Acad. Sci. USA 89(15), 7105–7109.
  • 186. Lévay G., Pathak D.N., Bodell W.J. (1996). Detection of DNA adducts in the white blood cells of B6C3F1 mice treated with benzene. Carcinogenesis 17(1), 151–153.
  • 187. Lindsey R.H., Bender R.P., Osheroff N. (2005a). Stimulation of topoisomerase II-mediated DNA cleavage by benzene metabolites. Chem. Biol. Interact. 153–154, 197–205.
  • 188. Lindsey R.H., Bender R.P., Osheroff N. (2005b). Effects of benzene metabolites on DNA cleavage mediated by human topoisomerase II alpha: 1,4-hydroquinone is a topoisomerase II poison. Chem. Res. Toxicol. 18(4), 761–770.
  • 189. Lindstrom A.B., Yeowell-O’Connell K., Waidyanatha S. i in. (1997). Measurement of benzene oxide in the blood of rats following administration of benzene. Carcinogenesis 18(8), 1637–1641.
  • 190. Linet M.S., Yin S.N., Gilbert E.S. i in. (2015). A retrospective cohort study of cause-specific mortality and incidence of hematopoietic malignancies in Chinese benzene-exposed workers. Int. J. Cancer 137(9), 2184–2197.
  • 191. Liu L., Zhang Q., Feng J. i in. (1996). The study of DNA oxidative damage in benzene-exposed workers. Mutat. Res. 370(3–4), 45–50.
  • 192. Longacre S.L., Kocsis J.J., Snyder R. (1981). Influence of strain differences in mice on the metabolism and toxicity of benzene. Toxicol. Appl. Pharmacol. 60(3), 398–409.
  • 193. Lovern M.R., Turner M.J., Meyer M. i in. (1997). Identification of benzene oxide as a product of benzene metabolism by mouse, rat and human liver microsomes. Carcinogenesis 18(9), 1695–1700.
  • 194. Low L.K., Meeks J.R., Norris K.J. i in. (1989). Pharmacokinetics and metabolism of benzene in Zymbal gland and other key target tissues after oral administration in rats. Environ. Health Perspect. 82, 215–222.
  • 195. Low L.K., Lambert C.D., Meeks J.R. i in. (1995). Tissue-specific metabolism of benzene in Zymbal gland and other solid tumor target tissues in rats. J. Am. Coll. Toxicol. 14(1), 40–60.
  • 196. Luke C.A., Tice R.R., Drew R.T. (1988). The effect of exposure regimen and duration on benzene-induced bone-marrow damage in mice: I. Sex comparison in DBA/2 mice. Mutat. Res. 203(4), 251–271.
  • 197. Lutz W.K., Schlatter C.H. (1977). Mechanism of the carcinogenic action of benzene: irreversible binding to rat liver DNA. Chem. Biol. Interact. 18(2), 241–245.
  • 198. Maibach H.I., Anjo D.M. (1981). Percutaneous penetration of benzene and benzene contained in solvents used in the rubber industry. Arch. Environ. Health 36(5), 256–260.
  • 199. Maltoni C., Conti B., Perino G. i in. (1988). Further evidence of benzene carcinogenicity: results on Wistar rats and Swiss mice treated by ingestion. Ann. N.Y. Acad. Sci. 534, 412–426.
  • 200. Maltoni C., Ciliberti A., Cotti G. i in. (1989). Benzene, an experimental multipotential carcinogen: results of the long- -term bioassays performed at the Bologna Institute of Oncology. Environ. Health Perpect. 82, 109–124.
  • 201. Mani C., Freeman S., Nelson D.O. i in. (1999). Species and strain comparisons in the macromolecular binding of extremely low doses of [14C]benzene in rodents, using accelerator mass spectrometry. Toxicol. Appl. Pharmacol. 159(2), 83–90.
  • 202. Manini P., De Palma G., Andreoli R. i in. (2008). Biological monitoring of low benzene exposure in Italian traffic policemen. Toxicol. Lett. 181(1), 25–30 [cyt. za: BEI 2020].
  • 203. Mansi A., Bruni R., Capone P. i in. (2012). Low occupational exposure to benzene in a petrochemical plant: modulating effect of genetic polymorphisms and smoking habit on the urinary t,t-MA/SPMA ratio. Toxicol. Lett. 213(1), 57–62.
  • 204. Marchetti F., Eskenazi B., Weldon R.H. i in. (2012). Occupational exposure to benzene and chromosomal structural aberrations in the sperm of Chinese men. Environ. Health Perspect. 120(2), 229–234.
  • 205. Marcon F., Zijno A., Crebelli R. i in. (1999). Chromosome damage and aneuploidy detected by interphase multicolour FISH in benzene-exposed shale oil workers. Mutat. Res. 445(2), 155–166.
  • 206. Mathews J.M., Etheridge A.S., Mathews H.B. (1998). Dose-dependent metabolism of benzene in hamsters, rats, and mice. Toxicol. Sci. 44(1), 14–21.
  • 207. Mattie D.R., Bates G.D. Jr, Jepson G.W. i in. (1994). Determination of skin:air partition coefficients for volatile chemical: experimental method and applications. Fundam. Appl. Toxicol. 22(1), 51–57.
  • 208. Mazzullo M., Bartoli S., Bonora B. i in. (1989). Benzene adducts with rat nucleic acids and proteins: dose-response relationship after treatment in vivo. Environ. Health Perspect. 82, 259–266.
  • 209. McCraw D.S., Joyner R.E., Cole P. (1985). Excess leukemia in a refinery population. J. Occup. Med. 27(3), 220–222.
  • 210. McDonald T.A., Yeowell-O’Connell K., Rappaport S.M. (1994). Comparison of protein adducts of benzene oxide and benzoquinone in the blood and bone marrow of rats and mice exposed to [14C/13C6] benzene. Cancer Res. 54(18), 4907– 4914.
  • 211. McDougal J.N., Jepson G.W., Clewell H.J. III i in. (1990). Dermal absorption of organic chemical vapors in rats and humans. Fundam. Appl. Toxicol. 14(2), 299–308.
  • 212. McHale C.M., Lan Q., Corso C. i in. (2008). Chromosome translocations in workers exposed to benzene. J. Natl. Cancer Inst. Monogr. 74–77.
  • 213. McHale C.M., Zhang L., Smith M.T. (2012). Current understanding of the mechanism of benzene-induced leukemia in humans: implications for risk assessment. Carcinogenesis 33(2), 240–252.
  • 214. McMahon T.F., Birnbaum L.S. (1991). Age-related changes in disposition and metabolism of benzene in male C57BL/6N mice. Drug Metab. Dispos. 19(16), 1052–1057.
  • 215. Medinsky M.A., Sabourin P.J., Henderson R.F. i in. (1989a). Differences in the pathways for metabolism of benzene in rats and mice simulated by a physiological model. Environ. Health Perspect. 82, 43–49.
  • 216. Medinsky M.A., Sabourin P.J., Lucier G. i in. (1989b). A physiological model for simulation of benzene metabolism by rats and mice. Toxicol. Appl. Pharmacol. 99(2), 193–206.
  • 217. Medinsky M.A., Sabourin P.J., Lucier G. i in. (1989c). A toxicokinetic model for simulation of benzene metabolism. Exp. Pathol. 37(1–4), 150–154.
  • 218. Meek M.E., Klaunig J. (2010). Proposed mode of action of benzene-induced leukemia: interpreting available data and identifying critical data gaps for benzene risk assessment. Chem. Biol. Interact. 184(1–2), 279–285.
  • 219. Melikian A.A., Prahalad A.K., Secker-Waker R.H. (1994). Comparison of the levels of the urinary benzene metabolite trans,trans,-muconic acid in smokers and nonsmokers, and the effects of pregnancy. Cancer Epidemiol. Biomarkers Prev. 3(3), 239–244.
  • 220. Meyne J., Legator M.S. (1980). Sex-related differences in cytogenetic effects of benzene in the bone marrow of Swiss mice. Environ. Mutagen. 2(1), 43–50.
  • 221. Mihułka M. (2003). Charakterystyka technologiczna produkcji wielkotonażowch związków organicznych w Unii Europejskiej. Ministerstwo Środowiska, Warszawa.
  • 222. Monks T.J., Butterworth M., Lau S.S. (2010). The fate of benzene-oxide. Chem. Biol. Interact. 184(1–2), 201–206.
  • 223. Morgan D.L., Cooper S.W., Carlock D.L. i in. (1991). Dermal absorption of neat and aqueous volatile organic chemicals in the Fischer 344 rat. Environ. Res. 55(1), 51–63.
  • 224. Morimoto K. (1983). Induction of sister chromatid exchanges and cell division delays in human lymphocytes by microsomal activation of benzene. Cancer Res. 43(3), 1330–1334.
  • 225. Mukhametova I.M., Vozovaya M.A. (1972). [Reproductive power and the incidence of gynecological disorders in female workers exposed to the combined effect of benzene and chlorinated hydrocarbons]. Gig. Tr. Prof. Zabol. 16(11), 6–9 [cyt. za: EPA 2002].
  • 226. Murray F.J., John J.A., Rampy L.W. i in. (1979). Embryotoxicity of inhaled benzene in mice and rabbits. Am. Ind. Hyg. Assoc. J. 40(11), 993–998 [cyt. za: DECOS 2014].
  • 227. Nakajima T., Okuyama S,. Yonekura I. i in. (1985). Effects of ethanol and phenobarbital administration on the metabolism and toxicity of benzene. Chem. Biol. Interact. 55(1–2), 23–38.
  • 228. Nakayama A., Noguchi Y., Mori T. i in. (2004). Comparison of mutagenic potentials and mutation spectra of benzene metabolites using supF shuttle vectors in human cells. Mutagenesis 19(2), 91–97.
  • 229. Natelson E.A. (2007). Benzene-induced acute myeloid leukemia: a clinician’s perspective. Am. J. Hematol. 82(9), 826– 830.
  • 230. Nebert D.W., Roe A.L., Vandale S.E. i in. (2002). NAD(P) H:quinone oxidoreductase (NQO1) polymorphism, exposure to benzene, and predisposition to disease: a HuGE review. Genet. Med. 4(2), 62–70.
  • 231. Nilsson R.I., Nordlinder R.G., Tagesson C. i in. (1996). Genotoxic effects in workers exposed to low levels of benzene from gasoline. Am. J. Ind. Med. 30(3), 317–324.
  • 232. NIOSH, National Institute for Occupational Safety and Health (1974). Criteria for a recommended standard: occupational exposure to benzene. DHHS (NIOSH) Publication No. 74-137.
  • 233. NIOSH, National Institute for Occupational Safety and Health (2010). NIOSH Pocket guide to chemical hazards. DHHS (NIOSH) Publication No. 2010-168.
  • 234. Nomiyama K., Nomiyama H. (1974). Respiratory retention, uptake, and excretion of organic solvents in man: benzene, toluene, n-hexane, trichloroethylene, acetone, ethyl acetate and ethyl alcohol. Int. Arch. Arbeitsmed 32(1), 75–83.
  • 235. NTP, National Toxicology Program (1986). Toxicology and carcinogenesis studies of benzene (CAS No. 71-43-2) in F344/N rats and B6C3F1 mice (gavage studies). Technical Report Series No. 289. NIH Publication No. 86-2545. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.
  • 236. NTP, National Toxicology Program (2007). Report on toxicology and carcinogenesis study of benzene (CAS No. 71-43-2) in genetically modiefied haploinsufficient p16Ink4a/p19Arf mice (gavage study). Report No. 08-4425. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Research Triangle Park, NC.
  • 237. Orsi L., Monnereau A., Dananche B. i in. (2010). Occupational exposure to organic solvents and lymphoid neoplasms in men: results of a French case-control study. Occup. Environ. Med. 67(10), 664–672.
  • 238. OSHA, Occupational Safety and Health Administration (1985). Occupational exposure to benzene. Proposed rule and notice of hearing. Fed. Reg. 50, 50512–50586 [cyt. za: ACGIH 2001b].
  • 239. OSHA, Occupational Safety and Health Administration (1987). Title 29, Code of Federal Regulations, Part 1910.1028, Occupational Exposure to Benzene; Final Rule, Part II. Fed. Reg. 52(176), 34460-34578 [cyt. za: ACGIH 2001b].
  • 240. OSHA, Occupational Safety and Health Administration (2017). Title 29, Code of Federal Regulations, Part 1910.1028, Occupational exposure to benzene.
  • 241. Ott G.M., Townsend J.C., Fishbeck W.A. i in. (1978). Mortality among individuals occupationally exposed to benzene. Arch. Environ. Health 33(1), 3–10.
  • 242. Parke D.V. (1989). Introduction: session on metabolism. Environ. Health Perspect. 82, 7–8.
  • 243. Parke D.V., Williams R.T. (1953). Studies in detoxication: 49. The metabolism of benzene containing [14C1]. Biochem. J. 54(2), 231–238.
  • 244. Paustenbach D.J., Price P.S., Ollison W. i in. (1992). Reevaluation of benzene exposure for the Pliofilm (rubber-worker) cohort (1936–1976). J. Toxicol. Environ. Health 36(3), 177– 231 [cyt. za: ACGIH 2001].
  • 245. Paxton M.B., Chinchilli V.M., Brett S.M. i in. (1994). Leukemia risk associated with benzene exposure in the pliofilm cohort: II. Risk estimates. Risk Anal. 14(2), 155–161 [cyt. za: ACGIH 2001].
  • 246. Pekari K., Vainiotalo S., Heikkilä P. i in. (1992). Biological monitoring of occupational exposure to low levels of benzene. Scand. J. Work Environ. Health 18(5), 317–322.
  • 247. Pfeifer R.W., Irons R.D. (1983). Alteration of lymphocyte function by quinones through sulfhydryl-dependent disruption of microtubule assembly. Int. J. Immunopharmacol. 5(5), 463–470.
  • 248. Philip P., Jensen M.K. (1970). Benzene induced chromosome abnormalities in rat bone marrow cells. Acta Pathol. Microbiol. Scand. Sect. A 78(4), 489–490.
  • 249. Pitarque M., Carbonell E., Lapeña N. i in. (1996). No increase in micronuclei frequency in cultured blood lymphocytes from a group of filling station attendants. Mutat. Res. Genet. Toxicol. 367(3), 161–167.
  • 250. Podręczny słownik chemiczny (2004). [Red.:] R. Hassa, J. Mrzigod, J. Nowakowski. Katowice, Videograf II.
  • 251. Popp W., Rauscher D., Müller G. i in. (1994). Concentrations of benzene in blood and S-phenylmercapturic and t,t-muconic acid in urine in car mechanics. Int. Arch. Occup. Environ. Health 66(1), 1–6.
  • 252. Purcell K.J., Cason G.H., Gargas M.L. i in. (1990). In vivo metabolic interactions of benzene and toluene. Toxicol. Lett. 52(2), 141–152.
  • 253. Pushkina N.N., Gofmekler V.A., Klevtsov G.N. (1968). Changes in content of ascorbic acid and nucleic acids produced by benzene and formaldehyde. Bull. Exp. Biol. Med. 66, 51–53 [cyt. za: EPA 2002].
  • 254. Qu Q., Shore R., Li G. i in. (2002). Hematological changes among Chinese workers with a broad range of benzene exposure. Am. J. Ind. Med. 42(4), 275–285.
  • 255. Qu Q., Shore R., Li G. i in. (2003a). Validation and evaluation of biomarkers in workers exposed to benzene in China. Res. Rep. Health Eff. Inst. (115), 1–72; discussion 73–87 [cyt. za: Toxicology profile... 2007].
  • 256. Qu Q., Shore R., Li G. i in. (2003b). Appendix A: Analyses of the combined data for year 1 and year 2. Validation and evaluation of biomarkers in workers exposed to benzene in China. Health Effects Institute, Boston, MA, 1–54. Research number 115 [cyt. za: Toxicology profile... 2007].
  • 257. Rao N.R. Snyder R. (1995). Oxidative modifications produced in HL-60 cells on exposure to benzene metabolites. J. Appl. Toxicol. 15(5), 403–409.
  • 258. Rappaport S.M., Waidyanatha S., Qu Q. i in. (2002a). Albumin adducts of benzene oxide and 1,4-benzoquinone as measures of human benzene metabolism. Cancer Res. 62(5), 1330–1337.
  • 259. Rappaport S.M., Yeowell-O’Connor K., Smith M.T. i in. (2002b). Non-linear production of benzene oxide–albumin adducts with human exposure to benzene. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 778(1–2), 367–374.
  • 260. Rappaport S.M., Kim S., Lan Q. i in. (2009). Evidence that humans metabolize benzene via two pathways. Environ. Health Perspect. 1(6), 946–952.
  • 261. Ray M.R., Roychoundhury S., Mukherjee S. i in. (2007). Occupational benzene exposure from vehicular sources in India and its effect on hematology, lymphocyte subsets and platelet P-selectin expression. Toxicol. Ind. Health 23(3), 167–175.
  • 262. Renz J.F., Kalf G.F. (1991). Role for interleukin-1 (IL-1) in benzene-induced hematotoxicity: inhibition of conversion of pre-IL-1alpha to mature cytokine in murine macrophages by hydroquinone and prevention of benzene-induced hematotoxicity in mice by IL-1alpha. Blood 78(4), 938–944.
  • 263. Rhomberg L., Goodman J., Tao G. i in. (2016). Evaluation of acute nonlymphocytic leukemia and its subtypes with updated benzene exposure and mortality estimates: a lifetable analysis of the Pliofilm cohort. J. Occup. Environ. Med. 58(4), 414–420.
  • 264. Rickert D.E., Baker T.S., Bus J.S. i in. (1979). Benzene disposition in the rat after exposure by inhalation. Toxicol. Appl. Pharmacol. 49(3), 417–423.
  • 265. Rinsky R.A. (1989). Benzene and leukemia: an epidemiologic risk assessment. Environ. Health Perspect. 82, 189–191.
  • 266. Rinsky R.A., Smith A.B., Hornung R. i in. (1987). Benzene and leukemia: an epidemiologic risk assessment. N. Engl. J. Med. 316(17), 1044–1050.
  • 267. Rinsky R.A., Young R.J., Smith A.B. (1981). Leukemia in benzene workers. Am. J. Ind. Med. 2(3), 217–245 [cyt. za: ACGIH 2001].
  • 268. Rivedal E., Witz G. (2005). Benzene metabolites block gap junction intercellular communication. Role in hematotoxicity and leukemia? Chem. Biol. Interact. 153–154, 257–260.
  • 269. Robinson S.N., Shah R., Wong B.A. i in. (1997). Immunotoxicological effects of benzene inhalation in male Sprague-Dawley rats. Toxicology 119(3), 227–237.
  • 270. RoC (2016). Report on Carcinogens, Benzene, 14th editions.
  • 271.Rothman N. Li G-L., Dosemeci M. i in. (1996). Hematotoxicity among Chinese workers heavily exposed to benzene. Am. J. Ind. Med. 29(3), 236–246,
  • 272. Rothman N., Smith M.T., Hayes R.B. i in. (1997). Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1 609C forward T mutation and rapid fractional excretion of chlorzoxazone. Cancer Res. 57(14), 2839–2842.
  • 273. Rozporządzenie Ministra Zdrowia z dnia 24 lipca 2012 r. w sprawie substancji chemicznych, ich mieszanin, czynników lub procesów technologicznych o działaniu rakotwórczym lub mutagennym w środowisku pracy (tekst jednolity DzU z 2016 r., poz. 1117)
  • 274. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1907/2006 z dnia 18 grudnia 2006 r. w sprawie rejestracji, oceny, udzielania zezwoleń i stosowanych ograniczeń w zakresie chemikaliów (REACH), utworzenia Europejskiej Agencji Chemikaliów, zmieniające dyrektywę 1999/45/WE oraz uchylające rozporządzenie Rady (EWG) nr 793/93 i rozporządzenie Komisji (WE) nr 1488/94, jak również dyrektywę Rady 76/769/EWG i dyrektywy Komisji 91/155/EWG, 93/67/ EWG, 93/105/WE i 2000/21/WE (w wersji sprostowanej Dz. Urz. UE L 136 z 29.05.2007 r., s. 3 z późn. zm.).
  • 275. Rozporządzenie Parlamentu Europejskiego i Rady (WE) nr 1272/2008 z dnia 16 grudnia 2008 r. w sprawie klasyfikacji, oznakowania i pakowania substancji i mieszanin, zmieniające i uchylające dyrektywy 67/548/EWG i 1999/45/WE oraz zmieniające rozporządzenie (WE) nr 1907/2006 (Dz. Urz. UE L 353 z dnia 31.12.2008 r.).
  • 276. Rozporządzenie REACH (2008). Rozporządzenie REACH w sprawie rejestracji, oceny, udzialania zezwoleń i stosowanych ograniczeń w zakresie chemikaliów. Załącznik XVII. Ograniczenia dotyczące produkcji, wprowadzania do obrotu i stosowania niektórych niebezpiecznych substancji, preparatów i wyrobów.
  • 277. Rushmore T., Snyder R., Kalf G. (1984). Covalent binding of benzene and its metabolites to DNA in rabbit bone marrow mitochondria in vitro. Chem. Biol. Interact. 49(1–2), 133–154.
  • 278. Sabourin P.J., Chen B.T., Lucier G. i in. (1987). Effect of dose on the absorption and excretion of [C14]benzene administered orally or by inhalation in rats and mice. Toxicol. Appl. Pharmacol. 87(2), 325–336.
  • 279. Sabourin P.J., Bechtold W.E., Birnbaum L.S. i in. (1988). Differences in the metabolism and disposition of inhaled [3H] benzene by F344/N rats and B6C3F1 mice. Toxicol. Appl. Pharmacol. 94(1), 128–140.
  • 280. Sabourin P.J., Bechtold W.E., Griffith W. i in. (1989). Effect of exposure concentration, exposure rate, and route of administration on metabolism of benzene by F344 rats and B6C3F1 mice. Toxicol. Appl. Pharmacol. 99(3), 421–444.
  • 281. Sabourin P.J., Muggenburg B.A., Couch R.C. i in. (1992). Metabolism of 14C benzene by cynomolgus monkeys and chimpanzees. Toxicol. Appl. Pharmacol. 114(2), 277–284.
  • 282. Sammett D., Lee E.W. Koscis J.J. i in. (1979). Partial hepatectomy reduces both the metabolism and toxicity of benzene. J. Toxicol. Environ. Health 5(5), 785–792.
  • 283. Sarto F., Cominato I., Pinton A.M. i in. (1984). A cytogenetic study on workers exposed to low concentrations of benzene. Carcinogenesis 5(6), 827–832.
  • 284. Sasiadek M., Jagielski J., Smolik R. (1989). Localization of breakpoints in the karyotype of workers professionally exposed to benzene. Mutat. Res. 224(2), 235–240.
  • 285. Sasiadek M., Jagielski J. (1990). Genotoxic effects observed in workers occupationally exposed to organic solvents. Pol. J. Occup. Med. 3(1), 103–108.
  • 286. Sato A. (1988). Toxicokinetics of benzene, toluene and xylenes. IARC Sci. Publ. 85, 47–64.
  • 287.Sato A., Nakajima T., Fujiwara Y., Murayama N. (1975). Kinetic studies on sex difference in susceptibility to chronic benzene intoxication - with special reference to body fat content. Br. J. Ind. Med. 32(4), 321–328.
  • 288. Schlosser M.J., Kalf G.F. (1989). Metabolic activation of hydroquinone by macrophage peroxidase. Chem. Biol. Interact. 72(1–2), 191–207.
  • 289. Schlosser P.M., Bond J.A., Medinsky M.A. (1993). Benzene and phenol metabolism by mouse and rat liver microsomes. Carcinogenesis 14(12), 2477–2486.
  • 290. Schmid T.E., Eskenazi B., Marchetti F. i in. (2006). Increased human DNA strand damage is associated with occupational exposure to benzene. Environ. Mol. Mutagen. 47(6), 418.
  • 291. Schnatter A.R., Nicholich M.J., Bird M.G. (1996). Determination of leukemogenic benzene exposure concentrations: refined analyses of the Pliofilm cohort. Risk Anal. 16(6), 833– 840 [cyt. za: ACGIH 2001].
  • 292. Schnatter A.R., Kerzic P.J., Zhou Y. i in. (2010). Peripheral blood effects in benzene-exposed workers. Chem. Biol. Interact. 184(1–2), 174–181.
  • 293. Schnatter A.R., Glass D.C., Tang G. i in. (2012). Myelodysplastic syndrome and benzene exposure among petroleum workers: an international pooled analysis. J. Natl. Cancer Inst. 10(22)4, 1724–1737.
  • 294.Schnatter A.R., Rooseboom M., Kocabas N.A. i in. (2020). Derivation of an occupational exposure limit for benzene using epidemiologcal study quality assessment tools. Toxicol. Lett. 334, 117–144.
  • 295. Schnier G.C., Laethem C.L., Koop D.R. (1989). Identification and induction of cytochromes P450, P450IIE1 and P450IA1 in rabbit bone marrow. J. Pharmacol. Exp. Ther. 251(2), 790–796.
  • 296. Schrenk H.H., Yant W.P., Pearce S.J. i in. (1941). Absorption, distribution, and elimination of benzene by body tissues and fluids of dogs exposed to benzene vapor. J. Ind. Hyg. Toxicol. 23, 20–34.
  • 297. SCOEL, Scientific Committee on Occupational Exposure Limits (1991). Recommendation from the Scientific Committee on Occupational Exposure Limits for benzene. SCOEL/ SUM/140.
  • 298. SCOEL, Scientific Committee on Occupational Exposure Limits (2014). List of recommended health-based biological limit values (BLVs) and biological guidance values (BGVs).
  • 299. Seixas G.M., Andon B.M., Hollingshead P.G. i in. (1982). The aza-arenes as mutagens for Salmonella typhimurium. Mutat. Res. 102(3), 201–212.
  • 300. Serrano M., Lee H., Chin L. i in. (1996). Role of the INK4a locus in tumor suppression and cell mortality. Cell 85(1), 27–37.
  • 301. Sharma R.K., Jacobsen-Kram D., Lemmon M. i in. (1985). Sister-chromatid exchange and cell replication kinetics in fetal and maternal cells after treatment with chemical teratogens. Mutat. Res. 158(3), 217–231.
  • 302. Sherwood R.J. (1988). Pharmacokinetics of benzene in a human after exposure at about the permissible limit. Ann. NY Acad. Sci. 534, 635–647.
  • 303. Sigma-Aldrich (2013). Karta charakterystyki: benzen. Siou G., Conan L., el Haitem M. (1981). Evaluation of the clastogenic action of benzene by oral administration with 2 cytogenetic techniques in mouse and Chinese hamster. Mutat. Res. 90(3), 273–278.
  • 304. Skowronski G.A., Turkall R.M., Abdell-Rahman M.S. (1988). Soil adsorption alters bioavailability of benzene in dermally exposed male rats. Am. Ind. Hyg. Assoc. J. 49(10), 506–511.
  • 305. Smith M.T. (1996). The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ. Health Perspect. 104(Suppl. 6), 1219–1225.
  • 306. Smith M.T., Yager J.W., Steinmetz K. i in. (1989). Peroxidase-dependent metabolism of benzene’s phenolic metabolites and its potential role in benzene toxicity and carcinogenicity. Environ. Health Perspect. 82, 23–29.
  • 307. Smith M.T., Zhang L., Wang Y. i in. (1998). Increased translocations and aneusomy in chromosomes 8 and 21 among workers exposed to benzene. Cancer Res. 58(10), 2176–2181.
  • 308. Smith M.T., Zhang L., Jeng M. i in. (2000). Hydroquinone, a benzene metabolite, increases the level of aneusomy of chromosomes 7 and 8 in human CD34-positive blood progenitor cells. Carcinogenesis 21(8), 1485–1490.
  • 309. Snyder R., Jowa L., Witz G. i in. (1987). Formation of reactive metabolites from benzene. Arch. Toxicol. 60(1–3), 61–64.
  • 310. Snyder R., Dimitriadis E., Guy R. i in. (1989). Studies on the mechanism of benzene toxicity. Environ. Health Perspect. 82, 31–35.
  • 311. Snyder R., Chepiga T., Yang C.S. i in. (1993). Benzene metabolism by reconstituted cytochromes P450, 2B1, and 2E1 and its modulation by cytochrome b5, microsomal epoxide hydrolase, and glutathione transferases: evidence for an important role of microsomal epoxide hydrolase in the formation of hydroquinone. Toxicol. Appl. Pharmacol. 122(2), 172–181.
  • 312. Snyder R., Hedli C.C. (1996). An overview of benzene metabolism. Environ. Health Perspect. 104(Suppl. 6), 1165–1171.
  • 313. Spycher B.D., Lupatsch J.E., Huss A. i in. (2017). Parental occupational exposure to benzene and the risk of childhood cancer: a census-based cohort study. Environ. Int. 108, 84–91.
  • 314. Srbova J., Teisniger J,. Skramovsky S. (1950). Absorption and elimination of inhaled benzene in man. Arch. Ind. Hyg. Occup. Med. 2(1), 1–8.
  • 315. Starek A. Dokumentacja proponowanych wartości dopuszczalnych wielkości narażenia zawodowego: benzen [71-43-2] [praca nieopublikowana].
  • 316. Stenehjem J.S., Kjaerheim K., Bråtveit M. i in. (2015). Benzne exposure and risk of limphohaematopoietic cancers in 25 000 offshore oil industry workers. Br. J. Cancer 112(9), 1603–1612.
  • 317. Stillman W.S., Varella-Garcia M., Gruntmeir J.J. i in. (1997). The benzene metabolite, hydroquinone, induces dosedependent hypoploidy in a human cell line. Leukemia 11(9), 1540–1545.
  • 318. Subrahmanyam V.V., Doane-Setzer P., Steinmetz K. i in. (1990). Phenol-induced stimulation of hydroquinone bioactivation in mouse bone marrow in vivo: possible implications in benzene myelotoxicity. Toxicology 62(1), 107–116.
  • 319. Subrahmanyam V.V., Kolanchana P., Smith M.T. (1991). Hydroxylation of phenol to hydroquinone catalyzed by a human myeloperoxidase-superoxide complex: possible implications in benzene myelotoxicity. Free Radic. Res. Comm. 15(5), 285–296.
  • 320. Sul D., Lee E., Le M.-Y. i in. (2005). DNA damage in lymphocytes of benzene exposed workers correlates with trans,trans-muconic acids and breath benzene levels. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 582(1–2), 61–70.
  • 321. Sun W., Gong Z., Li X. (1992). Effect of low benzene exposure on neurobehavioral function, AchE in blood and brain and bone marrow picture in mice. Biomed. Environ. Sci. 5(4), 349–354.
  • 322. Sun. R., Zhang J., Yin L. i in. (2014). Investigation into variation of endogenous metabolites in bone marrow cells and plasma in C3H/He mice exposed to benzene. Int. J. Mol. Sci. 15(3), 4994–5010.
  • 323. Sun R., Zhang J., Xiong M. i in. (2015). Altered expression of genes in signaling pathways regulating proliferation of hematopoietic stem and progenitor cells in mice with subchronic benzene exposure. Int. J. Environ. Res. Public Health 12(8), 9298–9313.
  • 324. Sun R., Zhang J., Wei H. i in. (2017). Acetyl-L-carnitine partially prevents benzene-induced hematotoxicity and oxidative stress in C3H/He mice. Environ. Toxicol. Pharmacol. 51, 108–113.
  • 325. Susten A.S., Dames B.L., Burg J.R. i in. (1985). Percutaneous penetration of benzene in hairless mice: An estimate of dermal absorption during tire-building operations. Am. J. Ind. Med. 7(4), 323–335.
  • 326. Swaen G.M.H., van Amelsvoort L., Twisk J.J. i in. (2010). Low level occupational benzene exposure and hematological parameters. Chem. Biol. Interact. 184(1–2), 94–100.
  • 327. Szajewski J., Feldman R., Glińska-Serawin M. (2000). Leksykon ostrych zatruć. Warszawa, PZWL, 150–151.
  • 328. Sze C.C., Shi C.Y., Ong C.N. (1996). Cytotoxicity and DNA strand breaks induced by benzene and its metabolites in Chinese hamster ovary cells. J. Appl. Toxicol. 16(3), 259–264.
  • 329. Tátrai E., Ungváry G., Hudák A. i in. (1980a). Concentration dependence of the embryotoxic effects of benzene inhalation in CFY rats. J. Hyg. Epidemiol. Microbiol. Immunol. 24(3), 363–371 [cyt. za: DECOS 2014].
  • 330. Tátrai E., Rodics K., Ungváry G. (1980b). Embryotoxic effects of simultaneously applied exposure of benzene and toluene. Folia Morphol. (Praha) 28(3), 286–289 [cyt. za: DECOS 2014].
  • 331. Teisinger J., Fiserova-Bergerova V., Kudrna J. (1952). [The metabolism of benzene in man]. Prac. Lek. 4(3), 175–188 [cyt. za: Draft - Extrapolation of the Benzene Inhalation, Unit Risk Estimate to the Oral Route of Exposure, 1999].
  • 332. Thienes H., Haley T.J. (1972). Clinical toxicology. 5th ed. Philadelphia, Lea & Febiger, 124–127 [cyt. za: EPA 2002].
  • 333. Tice R.R., Costa D.L., Drew R.T. (1980). Cytogenetic effects of inhaled benzene in murine bone marrow: induction of sister chromatid exchanges, chromosomal aberrations, and cellular proliferation inhibition in DBA/2 mice. Proc. Natl. Acad. Sci. U.S.A. 77(4), 2148–2152.
  • 334. Tice R.R., Vogt T.F., Costa D.L. (1982). Cytogenetic effects of inhaled benzene in murine bone marrow. Environ. Sci. Res. 25, 257–275.
  • 335. Topham J.C. (1980). Do induced sperm-head abnormalities in mice specifically identify mammalian mutagens rather than carcinogens? Mutat. Res. 74(5), 379–387.
  • 336. Toxicological profile of benzene (1997). U.S. Department of Health and Human Service [cyt. za: Lebrecht i in. 2003].
  • 337. Toxicological profile for benzene (2007). U.S. Department of Health and Human Services. Public Health Service. Agency for Toxic Substances and Disease Registry.
  • 338. Travis C.C., Quillen J.L., Arms A.D. (1990). Pharmacokinetics of benzene. Toxicol. Appl. Pharmacol. 102(3), 400–420.
  • 339. Triskelion Report Summary (2019). Socio-economic analysis of proposed occupational exposure limit for benzene, https:// www.aromaticsonline.eu/uploads/Modules/Publications/ sea-benzene-final_20190314---summary.pdf [data dostępu: 27.05.2022].
  • 340. Tsai S.P., Fox E.E., Ransdell J.D. i in. (2004). A hematology surveillance study of petrochemical workers exposed to benzene. Regul. Toxicol. Pharmacol. 40(1), 67–73,
  • 341. Tsuruta H. (1989). Skin absorption of organic solvent vapors in nude mice in vivo. Ind. Health 27(2), 37–47.
  • 342. Tsutsui T., Hayashi N., Maizumi H. i in. (1997). Benzene-, catechol-, hydroquinone- and phenol-induced cell transformation, gene mutations, chromosome aberrations, aneuploidy, sister chromatid exchanges and unscheduled DNA synthesis in Syrian hamster embryo cells. Mutat. Res. 373(1), 113–123.
  • 343. Tunek A., Högstedt B., Olofsson T. (1982). Mechanism of benzene toxicity: effects of benzene and benzene metabolites on bone marrow cellularity, number of granulopoietic stem cells and frequency of micronuclei in mice. Chem. Biol. Interact. 39(2), 129–138.
  • 344. Tunsaringkarn T., Suwansaksri J., Soogarun S. i in. (2011). Genotoxic monitoring and benzene exposure assessment of gasoline station workers in metropolitan Bangkok: sister chromatid exchange (SCE) and urinary trans, trans-muconic acid (t,t-MA). Asian Pac. J. Cancer Prev. 12(1), 223–227.
  • 345. Turteltaub K.W., Mani C. (2003). Benzene metabolism in rodents at doses relevant to human exposure from urban air. Health Effects Institute, Boston, MA. Research Report 113 [cyt. za: Toxicological profile... 2007].
  • 346. Ungváry G., Donath T. (1984). Effect of benzene and its methyl-derivatives (toluene, p-xylene) on post ganglionic noradrenergic nerves. Z. Mikrosk-Anat. Forsch. 98, 755–763 [cyt. za: EPA 2002].
  • 347. Ungváry G., Tátrai E. (1985). On the embryotoxic effects of benzene and its alkyl derivatives in mice, rats and rabbits. Arch. Toxicol. Suppl. 8, 425–430 [cyt. za: DECOS 2014].
  • 348. US EPA (1998). Carcinogenic effects of benzene: an update. National Center for Environmental Health, Office of Research and Development. Washington DC. EPA/600/P-97/001F [cyt. za: IRIS 2000].
  • 349. US EPA (2000). Integrated Risk Information System (IRIS). Benzene; CASRN 71-43-2
  • 350. Valentine J.L., Lee S.S., Seaton M.J. i in. (1996). Reduction of benzene metabolism and toxicity in mice that lack CYP2E1 expression. Toxicol. Appl. Pharmacol. 14(1), 205–213.
  • 351. Van Sittert N.J., Boogaard P.J., Beulink G.D. (1993). Application of the urinary S-phenylmercapturic acid test as a biomarker for low levels of exposure to benzene in industry. Br. J. Ind. Med. 50(5), 460–469 [cyt. za: BEI 2020].
  • 352. Verma Y., Rana S.V. (2008). Effects of progesterone on benzene toxicity in rats. Arh. Hig. Rada Toksikol. 59(1), 1–9.
  • 353. Vigliani E.C. (1976). Leukemia associated with benzene exposure. Ann. N.Y. Acad. Sci. 271, 143–151.
  • 354. Vinceti M., Rothman K.J., Crespi C.M. i in. (2012). Leukemia risk in children exposed to benzene and PM10 from vehicular traffic: a case-control study in an Italian population. Eur. J. Epidemiol. 27(10), 781–790.
  • 355. Wang J., Guo X., Chen Y. i in. (2021). Association between benzene exposure, serum levels of cytokines and hematological measures in Chinese workers: a cross-sectional study. Ecotoxicol. Environ. Saf. 207, 111562.
  • 356. Ward C.O., Kuna R.A., Snyder N.K. i in. (1985). Subchronic inhalation toxicity of benzene in rats and mice. Am. J. Ind. Med. 7(5–6), 457–473.
  • 357. Weisel C. (2010). Benzene exposure: an overview of monitoring methods and their findings. Chem. Biol. Interact. 184(1– 2), 58–66.
  • 358. Wells M.S., Nerland D.E. (1991). Hematotoxicity and concentration-dependent conjugation of phenol in mice following inhalation exposure to benzene. Toxicol. Lett. 56(1–2), 159–166.
  • 359. Whysner J., Vijayaraj Reddy M., Ross P.M. i in. (2004). Genotoxicity of benzene and its metabolites. Mutat. Res., Rev. Mutat. Res. 566(2), 99–130.
  • 360. Wiertelorz J. (2019). Rola benzolu na rynku benzenu. XXVII Konferencja „Koksownictwo”, 3-5.10.2019, Wisła.
  • 361. Williams P.R., Sahmel J., Knutsen J. i in. (2011). Dermal absorption of benzene in occupational settings: estimating flux and applications for risk assessment. Crit. Rev. Toxicol. 41(2), 111–142.
  • 362. Winn L.M. (2003). Homologous recombination initiated by benzene metabolites: a potential role of oxidative stress. Toxicol. Sci. 72(1), 143–149.
  • 363. Withey R.J., Hall J.W. (1975). The joint toxic action of perchloroethylene with benzene or toluene in rats. Toxicology 4(1), 5–15.
  • 364. Witz G., Rao G.S., Goldstein B.D. (1985). Short-term toxicity of trans,trans-mucondialdehyde. Toxicol. Appl. Pharmacol. 80(3), 511–516.
  • 365. Witz G., Gad S.C., Tice R.R. i in. (1990a). Genetic toxicity of the benzene metabolite trans,trans-muconaldehyde in mammalian and bacterial cells. Mutat. Res. 240(4), 295–306.
  • 366. Witz G., Kirley T.A., Maniara W.M. i in. (1990b). The metabolism of benzene to muconic acid, a potential biological marker of benzene exposure. Biol. React. Inter. IV 283, 613–618.
  • 367. Witz G., Zhang Z., Goldstein B.D. (1996). Reactive ringopened aldehyde metabolites in benzene hematotoxicity. Environ. Health Perspect. 104(Suppl 6), 1195–1199.
  • 368. Xing C., Marchetti F., Li G. i in. (2010). Benzene exposure near the U.S. permissible limit is associated with sperm aneuploidy. Environ. Health Perspect. 118(6), 833–839.
  • 369. Ye L., Zhang G., Huang J. i in. (2015). Are polymorphisms in metabolism protective or a risk for reduced white blood cell counts in a Chinese population with low occupational benzene exposures? Int. J. Occup. Environ. Health 21, 232–240.
  • 370. Yeowell-O’Connell K., Rothman N., Smith M.T. i in. (1998). Hemoglobin and albumin adducts of benzene oxide among workers exposed to high levels of benzene. Carcinogenesis 19(9), 1565–1571.
  • 371. Yin S. (1995). A cohort study of cancer among benzene exposed workers in China: overall results. Presented at the International Conference on the Toxicity, Carcinogenesis and Epidemiology of Benzene. Environmental and Occupational Health Sciences Institute, Piscataway, NJ [cyt. za: ACGIH 2001b].
  • 372. Yin S., Li G., Hu Y. i in. (1987a). Symptoms and signs of workers exposed to benzene, toluene or the combination. Ind. Health, 25(3), 113–130.
  • 373. Yin S.N., Li Q., Tian F. i in. (1987b). Occupational exposure to benzene in China. Br. J. Ind. Med. 44(3), 192–195.
  • 374. Yin S.N., Li G.L., Tain F.D. i in. (1987c). Leukemia in benzene workers: a retrospective cohort study. Br. J. Ind. Med. 44(2), 124–128.
  • 375. Yin S.N., Li G.L., Tain F.D. i in. (1989). A retrospective cohort study of leukemia and other cancers in benzene workers. Environ. Health Perspect. 82, 207–213.
  • 376. Yin S.N., Hayes R.B., Linet M.S. i in. (1996). A cohort study of cancer among benzene-exposed workers in China: overall results. Am. J. Ind. Med. 29(3), 227–235.
  • 377. Yoon J.-H., Kwak W.S., Ahn Y.-S. (2018). A brief review of relationship between occupational benzene exposure and hematopoietic cancer. Ann.Occup. Environ. Med. 30, 33–38.
  • 378. Yu R., Weisel C.P. (1996). Measurement of benzene in human breath associated with an environmental exposure. J. Expo. Anal. Environ. Epidemiol. 6(3), 261–77.
  • 379. Zarani F., Papazafiri P., Kappas A. (1999). Induction of micronuclei in human lymphocytes by organic solvents in vitro. J. Environ. Pathol. Toxicol. Oncol. 18(1), 21–28.
  • 380. Zhang L., Robertson M.L., Kolachana P. i in. (1993). Benzene metabolite, 1,2,4-benzenetriol, induces micronuclei and oxidative DNA damage in human lymphocytes and HL60 cells. Environ. Mol. Mutagen. 21(4), 339–348.
  • 381. Zhang L., Rothman N., Wang Y. i in. (1996). Interphase cytogenetics of workers exposed to benzene. Environ. Health Perspect. 104(Suppl 6), 1325–1329.
  • 382. Zhang Z., Cooper K., Goldstein B.D. i in. (1997). Distribution studies in CD-1 mice administered [14C]muconaldehyde. Arch. Toxicol. 71(11), 703–708.
  • 383. Zhang L., Rothman N., Wang Y. i in. (1998a). Increased aneusomy and long arm deletion of chromosomes 5 and 7 in the lymphocytes of Chinese workers exposed to benzene. Carcinogenesis 19(11), 1955–1961.
  • 384. Zhang L., Wang Y., Shang N. i in. (1998b). Benzene metabolites induce the loss and long arm deletion of chromosomes 5 and 7 in human lymphocytes. Leuk. Res. 22(2), 105–113.
  • 385. Zhang L., Rothman N., Wang Y. i in. (1999). Benzene increases aneuploidy in the lymphocytes of exposed workers: a comparison of data obtained by fluorescence in situ hybridization in interphase and metaphase cells. Environ. Mol. Mutagen. 34(4), 260–268.
  • 386. Zhang L., Lan Q., Guo W. i in. (2005). Use of OctoChrome fluorescence in situ hybridization to detect specific aneuploidy among all 24 chromosomes in benzene-exposed workers. Chem. Biol. Interact. 153–154, 117–122.
  • 387. Zhang L., Rothman N., Li G. i in. (2007). Aberrations in chromosomes associated with lymphoma and therapy-related leukemia in benzene-exposed workers. Environ. Mol. Mutagen. 48(6), 467–474.
  • 388. Zhang L., Lan Q., Guo W. i in. (2011). Chromosome-wide aneuploidy study (CWAS) in workers exposed to an established leukemogen, benzene. Carcinogenesis 32(4), 605–612.
  • 389. Zhang L., Lan Q., Ji Z. i in. (2012). Leukemia-related chromosomal loss detected in hematopoietic progenitor cells of benzene-exposed workers. Leukemia 26(12), 2494–2498.
  • 390. Zhang G., Ye L., Wang J. i in. (2014). Effect of polymorphic metabolizing genes on micronucleus frequencies among benzene-exposed shoe workers in China. Int. J. Hyg. Environ. Health 217(7), 726–732.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b25c2dd1-2a49-4ac0-b862-01f39f188efc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.