PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel technique to investigate the bubble coalescence in the presence of surfactant (MIBC) and electrolytes (NaCl and CaCl2)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An efficiency of flotation process is strongly dependent upon the collecting ability of air bubbles. On the other hand, the liquid film formed beetween two fully or partially mobile air/liquid interfaces being in contact has low stability, which leads to fast liquid drainage. Therefore, when they approach to each other, they tend to coalescence. Therefore, bubble coalescence is usually controlled with frothers in flotation process. Meanwhile, it is known that dissolved ions inhibit bubble coalescence. In this study, the bubble coalescence in the presence of MIBC was determined using a novel technique with a modified bubble-particle attachment timer. Additionally, the effect of NaCl and CaCl2 on bubble behavior was investigated along with surface tension and bubble coalescence time aspects. As a result of study, it is seen that the bubble coalescence time can be successfully determined with a bubble-bubble coalescence timer.
Rocznik
Strony
1215--1222
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
  • Istanbul University
autor
  • Istanbul University
autor
  • Istanbul University
autor
  • Istanbul University
autor
  • Istanbul University
Bibliografia
  • AHMED, N. and JAMESON, G.J., 1985, The effect of bubble size on the rate of flotation of fine particles, International Journal of Mineral Processing, 14, 3, 195-215.
  • ANG, Z.J., BOURNIVAL, G. and ATA, S., 2013, Influence of frothers on the detachment of galena particles from bubbles, International Journal of Mineral Processing, 121, 59-64.
  • ANGARSKA, J.K., TACHEV, K.D., KRALCHEVSKY, P.A., MEHRETEAB, A. and BROZE, G., 1998, Effects of counterions and co-ions on the drainage and stability of liquid films and foams, Journal of Colloid and Interface Science, 200, 31-45.
  • ATA, S., 2008, Coalescence of bubbles covered by particles, Langmuir, 24, 12, 6085-6091.
  • ATA, S., 2009, The detachment of particles from coalescing bubble pairs, Journal of Colloid and Interface Science, 338, 2, 558-565.
  • ATA, S. and JAMESON, G.J., 2005, The formation of bubble clusters in flotation cells, International Journal of Mineral Processing, 76, 1-2, 123-139.
  • BARBIAN, N., HADLER, K., VENTURA-MEDINA, E. and CILLIERS, J.J., 2005, The froth stability column: linking froth stability and flotation performance, Minerals Engineering, 18, 3, 317-324.
  • BOURNIVAL, G., ATA, S., KARAKASHEV, S.I. and JAMESON, G.J., 2014, An investigation of bubble coalescence and post-rupture oscillation in non-ionic surfactant solutions using high-speed cinematography, Journal of Colloid and Interface Science, 414, 50-58.
  • BOURNIVAL, G., PUGH, R.J. and ATA, S., 2012, Examination of NaCl and MIBC as bubble coalescence inhibitor in relation to froth flotation, Minerals Engineering, 25, 1, 47-53.
  • CASTRO, S., MIRANDA, C., TOLEDO, P. and LASKOWSKI, J.S., 2013, Effect of frothers on bubble coalescence and foaming in electrolyte solutions and seawater, International Journal of Mineral Processing, 124, 8-14.
  • CHO, Y.S. and LASKOWSKI, J.S., 2002, Effect of flotation frothers on bubble size and foam stability, International Journal of Mineral Processing, 64, 2, 69-80.
  • CHRISTENSON, H.K. and YAMINSKY, V.V., 1995, Solute Effects on Bubble Coalescence, J. Phys. Chem., 99, 1420-1420.
  • CILEK, E.C. and KARACA, S., 2015, Effect of nanoparticles on froth stability and bubble size distribution in flotation, International Journal of Mineral Processing, 138, 6-14.
  • CORONA-ARROYO, M.A., LÓPEZ-VALDIVIESO, A., LASKOWSKI, J.S. and ENCINAS-OROPESA, A., 2015, Effect of frothers and dodecylamine on bubble size and gas holdup in a downflow column, Minerals Engineering, 81, 109-115.
  • CRAIG, V.S.J., 2004, Bubble coalescence and specific-ion effects, Current Opinion in Colloid & Interface Science, 9, 1-2, 178-184.
  • CRAIG, V.S.J., NINHAM, B.W. and PASHLEY, R.M., 1993, The Effect of Electrolytes on Bubble Coalescence in Water, J. Phys. Chem.10192-10197.
  • DESCHENES, L.A., BARRETT, J., MULLER, L.J., FOURKAS, J.T. and MOHANTY, U., 1998, Inhibition of Bubble Coalescence in Aqueous Solutions. 1. Electrolytes, J. Phys. Chem. B, 102, 5115-5119.
  • FARROKHPAY, S., 2011, The significance of froth stability in mineral flotation--a review, Adv Colloid Interface Sci, 166, 1-2, 1-7.
  • FOULK, C.W. and MILLER, J.N., 1931, Experimental Evidence in Support of the Balanced-Layer Theory of Liquid Film Formation, INDUSTRIAL AND ENGINEERING CHEMISTRY, 23, 11, 1283-1288.
  • GUNGOREN, C., BAKTARHAN, Y., DEMIR, I., OZDEMIR, O., KURSUN UNVER, I. and OZKAN, S.G., 2017, A New Approach on the Measurement of Bubble Coalescence Time in Flotation, 6th International Congress of Mining Machinery & Technologies (IMMAT 2018), Izmir,
  • GUNGOREN, C., ERBEK, T.M., OZDEMIR, O. and OZKAN, S.G., 2015, Effect of Simultaneous Ultrasonic Treatment on Quartz-Amine Flotation System, XVI Balkan Mineral Processing Congress, Belgrade, Serbia,
  • HENRY, C.L., DALTON, C.N., SCRUTON, L. and CRAIG, V.S.J., 2007, Ion-Specific Coalescence of Bubbles in Mixed Electrolyte Solutions, J. Phys. Chem. C, 111, 1015-1023.
  • HORN, R.G., DEL CASTILLO, L.A. and OHNISHI, S., 2011, Coalescence map for bubbles in surfactant-free aqueous electrolyte solutions, Adv Colloid Interface Sci, 168, 1-2, 85-92.
  • KARN, A., SHAO, S., ARNDT, R.E.A. and HONG, J., 2016, Bubble coalescence and breakup in turbulent bubbly wake of a ventilated hydrofoil, Experimental Thermal and Fluid Science, 70, 397-407.
  • KIM, J.W., CHANG, J.H. and LEE, W.K., 1990, Inhibition of bubble coalescence by the electrolytes, Korean J. of Chem. Eng., 7, 2, 100-108.
  • KIRKPATRICK, R.D. and LOCKETT, M.J., 1974, The influence of approach velocity on bubble coalescence, Chemical Engineering Science, 29, 12, 2363-2373.
  • KRACHT, W. and FINCH, J.A., 2009, Using sound to study bubble coalescence, Journal of Colloid and Interface Science, 332, 1, 237-245.
  • KURNIAWAN, A.U., OZDEMIR, O., NGUYEN, A.V., OFORI, P. and FIRTH, B., 2011, Flotation of coal particles in MgCl2, NaCl, and NaClO3 solutions in the absence and presence of Dowfroth 250, International Journal of Mineral Processing, 98, 3-4, 137-144.
  • LEJA, J., 1982, Surface Chemistry of Froth Flotation. New York, NY, Plenum Press,
  • MARRUCCI, G. and NICODEMO, L., 1967, Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes, Chem. Eng. Sci. , 22, 9, 1257-1265.
  • MARUCCI, G. and NICODEMO, L., 1967, Coalescence of gas bubbles in aqueous solutions of inorganic electrolytes, Chemical Engineering Science, 22, 9, 1257–1265.
  • NGUYEN, A.V. and SCHULZE, H.J., 2004, Colloidal Science of Flotation. USA, Marcel Dekker.
  • ORVALHO, S., RUZICKA, M.C., OLIVIERI, G. and MARZOCCHELLA, A., 2015, Bubble coalescence: Effect of bubble approach velocity and liquid viscosity, Chemical Engineering Science, 134, 205-216.
  • OWOEYE, E.J. and SCHUBRING, D., 2017, Computational modeling of bubble coalescence in a high-pressure steam-water flow, Nuclear Engineering and Design, 319, 28-39.
  • OZDEMIR, O., 2013, Specific ion effect of chloride salts on collectorless flotation of coal, Physicochemical Problems of Mineral Processing, 49, 2, 511-524.
  • OZDEMIR, O., DU, H., KARAKASHEV, S.I., NGUYEN, A.V., CELIK, M.S. and MILLER, J.D., 2011, Understanding the role of ion interactions in soluble salt flotation with alkylammonium and alkylsulfate collectors, Adv Colloid Interface Sci, 163, 1, 1-22.
  • OZDEMIR, O., KARAKASHEV, S.I., NGUYEN, A.V. and MILLER, J.D., 2006, Adsorption of carbonate and bicarbonate salts at the air-brine interface, International Journal of Mineral Processing, 81, 3, 149-158.
  • OZDEMIR, O., KARAKASHEV, S.I., NGUYEN, A.V. and MILLER, J.D., 2009, Adsorption and surface tension analysis of concentrated alkali halide brine solutions, Minerals Engineering, 22, 3, 263-271.
  • OZDEMIR, O., TARAN, E., HAMPTON, M.A., KARAKASHEV, S.I. and NGUYEN, A.V., 2009, Surface chemistry aspects of coal flotation in bore water, International Journal of Mineral Processing, 92, 3-4, 177183.
  • RIBEIRO, C.P. and MEWES, D., 2007, The effect of electrolytes on the critical velocity for bubble coalescence, Chemical Engineering Journal, 126, 1, 23-33.
  • SANADA, T., WATANABE, M. and FUKANO, T., 2005, Effects of viscosity on coalescence of a bubble upon impact with a free surface, Chemical Engineering Science, 60, 19, 5372-5384.
  • TAO, D., 2005, Role of Bubble Size in Flotation of Coarse and Fine Particles—A Review, Separation Science and Technology, 39, 4, 741-760.
  • TSANG, Y.H., KOH, Y.-H. and KOCH, D.L., 2004, Bubble-size dependence of the critical electrolyte concentration for inhibition of coalescence, Journal of Colloid and Interface Science, 275, 1, 290-297. .
  • TSAO, H. and KOCH, F.L., 1994, Collisions of slightly deformable, high Reynolds number bubbles with short range repulsive forces, Physics of Fluids, 6, 8, 2591-2605.
  • WEISSENBORN, P.K. and PUGH, R.J., 1995, Surface Tension and Bubble Coalescence Phenomena of Aqueous Solutions of Electrolytes, Langmuir, 11, 1422-1426.
  • XING, Y., GUI, X., CAO, Y., WANG, Y., XU, M., WANG, D. and LI, C., 2017, Effect of compound collector and blending frother on froth stability and flotation performance of oxidized coal, Powder Technology, 305, 166-173.
  • YOON, R.H. and LUTTRELL, G.H., 1986, The Effect of Bubble Size on Fine Coal Flotation, Coal Preparation, 2, 3, 179-192.
  • YOON, R.H. and LUTTRELL, G.H., 1989, The Effect of Bubble Size on Fine Particle Flotation. Frothing in Flotation, J. S. Laskowski, Gordon and Breach Science Publishers.
  • ZAWALA, J. and MALYSA, K., 2011, Influence of the Impact Velocity and Size of the Film Formed on Bubble Coalescence Time at Water Surface, Langmuir, 27, 6, 2250-2257.
  • ZAWALA, J., WIERTEL, A., NIECIKOWSKA, A. and MALYSA, K., 2017, Influence of external vibrations on bubble coalescence time at water and oil surfaces—Experiments and modelling, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 519, 137-145.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b25b1c2b-7cda-438e-9202-a7681cf43992
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.