PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Medical and military applications of 3D printing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
3D printing, 3D scanning and reverse engineering may constitute a significant breakthrough in research all over the world, especially within medical and military technologies. Particularly 3D printing seems to be a promising method to produce 3D objects manufactured layer-by-layer. The broader use of the above technologies may allow customization of various products and lower costs of design and production. At the same time progress in 3D printing technologies needs to be monitored and analyzed in order to deal with possible future threats. This article aims at investigating the extent to which the military and biomedical applications of 3D scanners and 3D printers are exploited, including in the framework of the authors’ own concepts, studies and observations.
Twórcy
  • The Physiotherapy Department, Ludwik Rydygier Collegium Medicum and the Neurocognitive Laboratory, the Interdisciplinary Centre for Modern Technologies, the Nicolaus Copernicus University in Toruń
autor
  • Department of Mechatronics, the Mechanics and IT Institute, the Kazimierz Wielki University of Bydgoszcz
  • Department of Mechatronics, the Mechanics and IT Institute, the Kazimierz Wielki University of Bydgoszcz
autor
  • Department of Mechatronics, the Mechanics and IT Institute, the Kazimierz Wielki University of Bydgoszcz
autor
  • Department of Mechatronics, the Mechanics and IT Institute, the Kazimierz Wielki University of Bydgoszcz
Bibliografia
  • 1. Mikołajewska E., Mikołajewski D., Inżynieria biomedyczna na polu walki, Kwartalnik Bellona 4 (2010) p. 96-102.
  • 2. Mikołajewska E., Macko M., Ziarnecki Ł., Stańczak S., Kawalec P., Mikołajewski D. 3D printing technologies in rehabilitation engineering. Journal of Health Sciences 4 (2014) p. 78-83.
  • 3. Canessa E., Fonda C., Zennaro M. Low cost 3D printers for science, education & sustainable education. Abdus Salam International Centre for Theoretical Physics, 2013.
  • 4. Czerwieński K., Czerwieński M. Drukowanie w 3D. InfoAudit, 2014.
  • 5. Evans B. Practical 3D Printers: The Science and Art of 3D Printing. Springer Verlag, 2012.
  • 6. Frauenfelder M. Make: Ultimate Guide to 3D Printing 2014. O'reilly Vlg. Gmbh&Co., 2014.
  • 7. Hausman K., Horne R. 3D Printing For Dummies. John Wiley&Sons, 2014.
  • 8. Hood-Daniel P., James K., Kelly K. Printing in Plastic: Build Your Own 3D Printer. Apress, 2011.
  • 9. James Floyd K. 3D printing, Person Que, 2012.
  • 10. Kaziunas France A. Świat druku 3D. Przewodnik. Helion 2014.
  • 11. Wolszczak P. Druk 3D w edukacji technicznej. Forum Narzędziowe Oberon 2 (2014) p. 16-17.
  • 12. Schubert C, van Langeveld M. C., Donoso L. A. Innovations in 3D printing: a 3D overview from optics to organs. Br J Ophthalmol. 98 (2014) p. 159-161.
  • 13. Ventola C. L. Medical Applications for 3D Printing: Current and Projected Uses. Phys Ther. 39 (2014) p. 704-711.
  • 14. Huang W., Zhang X. 3D Printing: Print the future of ophthalmology. Invest Ophthalmol Vis Sci. 55 (2014) p. 5380-5381.
  • 15. Mironov V., Boland T., Trusk T., Forgacs G., Markwald R. R. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 21 (2003) p. 157-161.
  • 16. Herrmann K. H., Gärtner C., Güllmar D., Krämer M., Reichenbach J. R. 3D printing of MRI compatible components: Why every MRI research group should have a low-budget 3D printer. Med Eng Phys. 36 (2014) p. 1373-1380.
  • 17. Mannor M. S. i in. 3D printed bionic ears. Nano Lett. 13 (2013) p. 2634–2639.
  • 18. Kolakovic R., Viitala T., Ihalainen P., Genina N., Peltonen J., Sandler N. Printing technologies in fabrication of drug delivery systems. Expert Opin Drug Deliv. 10 (2013) p. 1711-1723.
  • 19. Ursan I. D., Chiu L., Pierce A. Three-dimensional drug printing: a structured review. J Am Pharm Assoc. 53 (2013) p. 136-144.
  • 20. Herbert N., Simpson D., Spence W. D. Ion W. A preliminary investigation into the development of 3-D printing of prosthetic sockets. Journal of Rehabilitation Research & Development 42 (2005) p. 141-146.
  • 21. Douglas T. S. Additive manufacturing: From implants to organs. S Afr Med J. 104 (2014) p. 408-409.
  • 22. Chang W. C, Kliot M., Sretavan D. W. Microtechnology and nanotechnology in nerve repair. Neurol Res. 30 (2008) p. 1053-1062.
  • 23. Zhu W., O'Brien C., O'Brien J. R., Zhang L. G. 3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine 9 (2014) p. 859-875.
  • 24. Deng A., Xiong R., He W., Wei D., Zeng C. Postoperative rehabilitation strategy for acetabular fracture: application of 3D printing technique. Nan Fang Yi Ke Da Xue Xue Bao. 34 (2014) p. 591-593.
  • 25. Klein G. T., Lu Y., Wang M. Y. 3D printing and neurosurgery – ready for prime time? World Neurosurg. 80 (2013) p. 233-235.
  • 26. Goiato M. C., Santos M. R., Pesqueira A. A., Moreno A., dos Santos D. M., Haddad M. F. Prototyping for surgical and prosthetic treatment. J Craniofac Surg. 23 (2011) p. 914-917.
  • 27. Telfer S., Abbott M., Steultjens M., Rafferty D., Woodburn J. Dose-response effects of customised foot orthoses on lower limb muscle activity and plantar pressures in pronated foot type. Gait Posture. 38 (2013) p. 443-449.
  • 28. Bibb R., Brown R. The application of computer aided product development techniques in medical modelling topic: rehabilitation and prostheses. Biomed Sci Instrum. 36 (2000) p. 319-324.
  • 29. Weiss H. R. "Brace technology" thematic series - the Gensingen brace™ in the treatment of scoliosis. Scoliosis. 5 (2010) p. 22.
  • 30. Cohen A., Laviv A., Berman P., Nashef R., Abu-Tair J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 108 (2009) p. 661-666.
  • 31. Pauchot J., Lachat J., Floret F., Badet J. M., Tavernier L., Aubry S. Stereomodel-assisted fibula free flap harvest and mandibular reconstruction: A technical note. Literature review of CAS and CAM applied to mandibular reconstruction. Rev Stomatol Chir Maxillofac Chir Orale. (2013) doi: 10.1016/j.revsto.2013.06.002.
  • 32. Shahmiri R., Das R., Aarts J. M., Bennani V. Finite element analysis of an implant-assisted removable partial denture during bilateral loading: Occlusal rests position. J Prosthet Dent. (2014) pii: S0022-3913(14)00237-6.
  • 33. Yuan F. S., Sun Y. C., Wang Y., Lü P. J. Accuracy evaluation of a new three-dimensional reproduction method of edentulous dental casts, and wax occlusion rims with jaw relation. Int J Oral Sci. 5 (2013) p. 155-161.
  • 34. Giordano M, Ausiello P, Martorelli M. Accuracy evaluation of surgical guides in implant dentistry by non-contact reverse engineering techniques. Dent Mater. 28 (2012) p. 178-185.
  • 35. Leijnse J. N., Spoor C. W. Reverse engineering finger extensor apparatus morphology from measured coupled interphalangeal joint angle trajectories - a generic 2D kinematic model. J Biomech. 45 (2012) p. 569-578.
  • 36. Zhou L. B., Shang H. T., He L. S. i in. Accurate reconstruction of discontinuous mandible using a reverse engineering/computer-aided design/rapid prototyping technique: a preliminary clinical study. J Oral Maxillofac Surg. 68 (2010) p. 2115-2121.
  • 37. Walther G. Printing Insecurity? The Security Implications of 3D-Printing of Weapons. Sci Eng Ethics. 2014 [Epub ahead of print].
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b25ae9a3-25ec-4d7f-9d30-1c5fdccc83b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.