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K-CONTINUITY PROBLEM OF K-SUPERQUADRATIC
SET-VALUED FUNCTIONS

KATARZYNA TROCZKA-PAWELEC

Abstract

In this paper we study K-superquadratic set-valued functions.We will present here
some connections between K-boundedness of K-superquadratic set-valued functions and
K-semicontinuity of multifunctions of this kind.

1. Introduction

LetX = (X,+) be an arbitrary topological group. A real-valued function
F is called superquadratic, if it fulfils inequality

(1) 2F (x) + 2F (y) ≤ F (x+ y) + F (x− y), x, y ∈ X.
If the sign “≤” in (1) is replaced by “≥”, then F is called subquadratic.
The continuity problem of functions of this kind was considered in [2]. This
problem was also considered in the class of set-valued functions. In this
case F is called subquadratic set-valued function, if it satisfies inclusion

(2) F (x+ y) + F (x− y) ⊂ 2F (x) + 2F (y), x, y ∈ X
and superquadratic set-valued function, if it satisfies inclusion defined in
such a form:

(3) 2F (x) + 2F (y) ⊂ F (x+ y) + F (x− y), x, y ∈ X.
For usual (i.e. single-valued) functions the properties of subquadratic and

superquadratic functions are quite analogous and, in view of the fact that if
a function F is subquadratic, then the function −F is superquadratic and
conversely, it is not necessary to investigate functions of these two kinds
individually.

In the case of set-valued functions the situation is different. Even if prop-
erties of subquadratic and superquadratic set-valued functions are similar,
we have to prove them separately.
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If the sign “⊂” in the inclusions above is replaced by “=”, then F is called
quadratic set-valued function. The class of quadratic set-valued functions
is an important subclass of the class of subquadratic and superquadratic
set-valued functions. Quadratic set-valued functions have already extensive
bibliography (see D. Henney [1], K. Nikodem [4] and W. Smajdor [5]). The
continuity problem of subquadratic and superquadratic set-valued functions
was considered in [6] and [7].

If we enlarge the space of values of a set-valued function F by a cone K
we can consider K-superquadratic set-valued functions, that is solutions of
the inclusion

(4) F (x+ y) + F (x− y) ⊂ 2F (x) + 2F (y) +K, x, y ∈ X.

The concept of K-superquadraticity is related to real-valued superquadratic
functions. Note, in the case when F is a single-valued real function and
K = [0,∞), we obtain the standard definition of superquadratic functions
(1).

Similarly, if a set-valued function F satisfies the following inclusion

(5) 2F (x) + 2F (y) ⊂ F (x+ y) + F (x− y) +K, x, y ∈ X

then it is called K-subquadratic. The K-continuity problem of multifunc-
tion of this kind was considered in [8]. It has been proved there that
a K-subquadratic set-valued function F defined on 2-divisible topological
group X with non-empty, compact and convex values in a locally convex
topological vector space Y , which is K-continuous at zero and locally K-
bounded in X, is K-continuous everywhere in X.

In this paper we shall consider similar problem for K-superquadratic
set-valued functions. Likewise as in functional analysis we can look for
connections between K-boundedness and K-semi-continuity of set-valued
functions of this kind.

Assuming K = {0} in (4) and (5), we obtain the inclusions (2) and (3).
Let us start with the notations used in this paper. Let Y be a topological

vector space. Let n(Y ) denotes the family of all non-empty subsets of Y
and cc(Y )−the family of all compact and convex members of n(Y ). The
term set-valued function will be abbreviated to the form s.v.f.

Recall that a set K ⊂ Y is called a cone iff K +K ⊂ K and sK ⊂ K for
all s ∈ (0,∞).

Definition 1. (cf. [3]) A cone K in a topological vector space Y is said to
be a normal cone iff there exists a base W of zero in Y such that

W = (W +K) ∩ (W −K)

for all W ∈W.
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Definition 2. (cf. [3]) An s.v.f. F : X → n(Y ) is said to be K-upper semi-
continuous (abbreviated K-u.s.c.) at x0 ∈ X iff for every neighbourhood V
of zero in Y there exists a neighbourhood U of zero in X such that

F (x) ⊂ F (x0) + V +K

for every x ∈ x0 + U .

Definition 3. (cf. [3]) An s.v.f. F : X → n(Y ) is said to be K-lower semi-
continuous (abbreviated K-l.s.c.) at x0 ∈ X iff for every neighbourhood V
of zero in Y there exists a neighbourhood U of zero in X such that

F (x0) ⊂ F (x) + V +K

for every x ∈ x0 + U .

Definition 4. (cf. [3]) An s.v.f. F : X → n(Y ) is said to be K-continuous
at x0 ∈ X iff it is both K-u.s.c. and K-l.s.c. at x0. It is said to be
K-continuous iff it is K-continuous at each point of X.

Note that in the case where K = {0} the K-continuity of F means its
continuity with respect to the Hausdorff topology on n(Y ).

In this paper we will use the following lemma.

Lemma 1. (cf. [8]) Let Y be a topological vector space and K be a cone
in Y . Let A, B, C be non-empty subsets of Y such that A+C ⊂ B+C+K.
If B is convex and C is bounded, then A ⊂ B +K.

2. The main result

In the proof of the main theorem we will often use four known lemmas
(see Lemma 1.1, Lemma 1.3, Lemma 1.6 and Lemma 1.9 in [9]). The first
lemma says that for a convex subset A of an arbitrary real vector space Y
the equality (s + t)A = sA + tA holds for every s, t ≥ 0 or (s,t<0). The
second lemma says that in a real vector space Y for two convex subsets
A, B the set A + B is also convex. The next lemma says that if A ⊂ Y is
a closed set and B ⊂ Y is a compact set, where Y denotes a real topological
vector space, then the set A+B is closed. For any sets A,B ⊂ Y , where Y
denotes the same space as above, the inclusion A + B ⊂ A+B holds and
the equality holds if and only if the set A+B is closed.

Notice that for the cone K the following remark holds.

Remark 1. Let Y be a real topological vector space. If K is a closed cone,
then it is a cone with zero.

Let us adopt the following three definitions which are natural extension
of the concept of the boundedness for real-valued functions.
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Definition 5. An s.v.f. F : X → n(Y ) is said to be K-lower bounded on
a set A ⊂ X iff there exists a bounded set B ⊂ Y such that F (x) ⊂ B +K
for all x ∈ A. An s.v.f. F : X → n(Y ) is said to be K-lower bounded at
a point x ∈ X iff there exists a neighbourhood Ux of zero in X such that F
is K-lower bounded on a set x+ Ux

Definition 6. An s.v.f. F : X → n(Y ) is said to be K-upper bounded on
a set A ⊂ X iff there exists a bounded set B ⊂ Y such that F (x) ⊂ B −K
for all x ∈ A. An s.v.f. F : X → n(Y ) is said to be K-upper bounded at
a point x ∈ X iff there exists a neighbourhood Ux of zero in X such that F
is K-upper bounded on a set x+ Ux

Definition 7. An s.v.f. F : X → n(Y ) is said to be locally K-bounded in
X iff it is both K-upper and K-lower bounded at every point x ∈ X.

Definition 8. We say that 2-divisible topological group X has the property(
1
2

)
iff for every neighbourhood V of zero there exists a neighbourhood W of

zero such that 1
2W ⊂W ⊂ V .

For the K-superquadratic set-valued functions the following theorem
holds.

Theorem 1. Let X be a 2-divisible topological group with property
(
1
2

)
, Y –

locally convex topological real vector space and K ⊂ Y a closed normal cone.
If a K-superquadratic s.v.f. F : X → cc(Y ) is K-u.s.c. at zero, F (0) = {0}
and locally K-bounded in X, then it is K-u.s.c. in X.

Proof. Suppose that F is not K-u.s.c. at a point z ∈ X, i.e. there exists
a neighbourhood V of zero in Y such that for every neighbourhood U of
zero in X we can find xu ∈ U for which

F (z + xu) * F (z) + V +K.

Take a balanced convex neighbourhood W of zero in Y such that

W ⊂ V

and
F (z) +W +K ⊂ F (z) + V +K.

Then also

(6) F (z + xu) * F (z) +W +K.

Let a neighbourhood U of zero in X be arbitrarily fixed. Suppose that

(7) F (z + xu) + 2k
(

2k − 1
)
F (xu) * F (z + (1− 2k)xu) + 2kW +K
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for some k ∈ N ∪ {0}. The proof of (7) runs by induction. For k = 0
condition (7) holds with respect to (6). Putting y = x in (4) and using
condition F (0) = {0}, we have

F (2x) ⊂ 4F (x) +K.

An easy induction shows

(8) F (2nx) ⊂ 4nF (x) +K

for x ∈ X and for all positive integers n ∈ N. By K-superquadraticity of F
and (8), we have

F
(
z + (1− 2k+1)xu

)
+ F (z + xu) =

= F
(
z + xu − 2kxu − 2kxu

)
+ F

(
z + xu − 2kxu + 2kxu

)
⊂

⊂ 2F
(
z + xu − 2kxu

)
+ 2F

(
2kxu

)
+K ⊂

(9) ⊂ 2F
(
z + (1− 2k)xu

)
+ 22k+1F (xu) +K.

In view of the fact that for any sets A,B ⊂ Y,A+B ⊂ A+B we get

F (z + (1− 2k)xu) + 2kW +K +K ⊂

⊂ F (z + (1− 2k)xu) + 2kW +K

and, consequently,

F (z + (1− 2k)xu) + 2kW +K +K ⊂

(10) ⊂ F (z + (1− 2k)xu) + 2kW +K.

By (7) and (10), we obtain

F (z + xu) + 2k
(

2k − 1
)
F (xu) * F (z + (1− 2k)xu) + 2kW +K +K.

Notice that for a cone K the equality aK = K holds for every a ∈ (0,∞).
Hence,

(11) 2F (z + xu) + 2k+1
(

2k − 1
)
F (xu) *

* 2F (z + (1− 2k)xu) + 2k+1W +K +K.

By (11) and Lemma 1,

2F (z + xu) + 2k+1
(

2k − 1
)
F (xu) + 22k+1F (xu) *

* 2F (z + (1− 2k)xu) + 2k+1W +K + 22k+1F (xu) +K.
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In view of Remark 1, K is a cone with zero. Therefore by above,

(12) 2F (z + xu) + 2k+1
(

2k − 1
)
F (xu) + 22k+1F (xu) +K *

* 2F (z + (1− 2k)xu) + 2k+1W +K + 22k+1F (xu) +K.

In view of the fact that the sum of closed and compact sets is closed and
for any sets A,B ⊂ Y,A+B = A+B, in the case where Ā+ B̄ is a closed
set, we get

(13) 2F (z + (1− 2k)xu) + 2k+1W +K + 22k+1F (xu) =

= 2F (z + (1− 2k)xu) + 2k+1W +K + 22k+1F (xu).

Since K is a cone, by (9), we obtain

(14) F (z + (1− 2k+1)xu) + F (z + xu) + 2k+1W +K ⊂

⊂ 2F (z + (1− 2k)xu) + 2k+1W +K + 22k+1F (xu).

Since F has closed values, we get

(15) F (z + xu) + F (z + (1− 2k+1)xu) + 2k+1W +K +K ⊂

⊂ F (z + (1− 2k+1)xu) + F (z + xu) + 2k+1W +K +K.

Consequently, by (12–15) we conclude

2F (z + xu) + 2k+1
(

2k − 1
)
F (xu) + 22k+1F (xu) +K *

* F (z + xu) + F (z + (1− 2k+1)xu) + 2k+1W +K +K.

By convexity of the sets F (xu) i F (z + xu), we obtain

F (z + xu) + F (z + xu) + 2k+1
(

2k+1 − 1
)
F (xu) +K *

* F (z + xu) + F (z + (1− 2k+1)xu) + 2k+1W +K +K.

Therefore,
F (z + xu) + 2k+1

(
2k+1 − 1

)
F (xu) *

* F (z + (1− 2k+1)xu) + 2k+1W +K.

We have proved that (7) holds for every neighbourhood U of zero in X
and k = 0, 1, 2...

Since K is a normal cone, there exists a base W of neighbourhoods of
zero in Y such that M = (M + K) ∩ (M − K) for all M ∈ W. We can
choose W1 ∈W and balanced neighbourhood W2 of zero in Y such that

W2 ⊂W1 ⊂W.
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Because F isK-lower bounded on a neighbourhood of z, there exists a neigh-
bourhood U0 of zero in X and a bounded set B1 ⊂ Y such that

F (z + t) ⊂ B1 +K, t ∈ U0.

Since the set B1 is bounded, there exists λ1 > 0 such that

B1 ⊂
1

λ1
W2.

Therefore, by above,

F (z + t) ⊂ 1

λ1
W2 +K, t ∈ U0.

Similarly, since F is K-upper bounded on a neighbourhood of z, there exists
a neighbourhood U1 of zero in X and a bounded set B2 ⊂ Y such that

F (z + t) ⊂ B2 −K, t ∈ U1.

Since the set B2 is bounded, there exists λ2 > 0 such that

B2 ⊂
1

λ2
W2.

Therefore, by above,

F (z + t) ⊂ 1

λ2
W2 −K, t ∈ U1.

Let λ := min{λ1, λ2}. Since W2 is a balanced set, we get

(16) F (z + t) ⊂ 1

λ
W2 +K ⊂ 1

λ
W1 +K, t ∈ U0

and

(17) F (z + t) ⊂ 1

λ
W2 −K ⊂

1

λ
W1 −K, t ∈ U1.

By (16) and (17), we obtain

(18) F (z + t) ⊂
(

1

λ
W1 +K

)
∩
(

1

λ
W1 −K

)
, t ∈ U0 ∩ U1.

Because of W1 ∈W, we have(
1

λ
W1 +K

)
∩
(

1

λ
W1 −K

)
=

1

λ
W1

and, consequently, the following inclusion holds

(19) F (z + t) ⊂ 1

λ
W

for every t ∈ U0 ∩ U1.
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Let k ∈ N be so large that

(20) 2k >
3

λ
.

Let U be a symmetric neighbourhood of zero inX such that U+U ⊂ U0∩U1

and 1
2U ⊂ U . Consider two sets 1

2k
U i 1

λ2k(2k−1)
W . Since F is K-u.s.c. at

zero and F (0) = {0}, there exists a symmetric neighbourhood U2 of zero
in X such that

(21) U2 ⊂
1

2k
U ⊂ U

and

(22) F (t) ⊂ 1

λ2k(2k − 1)
W +K, t ∈ U2.

There exists xu ∈ U2 such that (7) holds. By (21),

(23)
(

1− 2k
)
xu = xu − 2kxu ∈ U2 − U ⊂ U + U ⊂ U0 ∩ U1

and by (22),

(24) F (xu) ⊂ 1

λ2k(2k − 1)
W +K.

Let a ∈ F
(
z + (1− 2k)xu

)
, b ∈ F (z + xu) i c ∈ F (xu). By (19), (20), (23)

and (24), we obtain

b+ 2k
(

2k − 1
)
c− a ∈ 1

λ
W +

1

λ
W +K +

1

λ
W ⊂ 2kW +K.

Therefore,

b+ 2k
(

2k − 1
)
c ∈ F

(
z + (1− 2k)xu

)
+ 2kW +K.

We have proved that

F (z + xu) + 2k
(

2k − 1
)
F (xu) ⊂ F

(
z + (1− 2k)xu

)
+ 2kW +K,

which contradicts (7). �

This article is an introduction to the discussion on the K-continuity
problem for K-superquadratic set-valued functions. In the theory of K-
subquadratic and K-superquadratic set-valued functions an important role
is played by theorems giving possibly weak conditions under which such
multi-functions are K-continuous.
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