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K-CONTINUITY PROBLEM OF K-SUPERQUADRATIC
SET-VALUED FUNCTIONS

KATARZYNA TROCZKA-PAWELEC

ABSTRACT

In this paper we study K-superquadratic set-valued functions.We will present here
some connections between K-boundedness of K-superquadratic set-valued functions and
K-semicontinuity of multifunctions of this kind.

1. INTRODUCTION

Let X = (X, +) be an arbitrary topological group. A real-valued function
F is called superquadratic, if it fulfils inequality

(1) 2F(x) +2F(y) < Flx+y)+ F(r —y), z,yecX.

If the sign “<” in (1) is replaced by “>”, then F is called subquadratic.
The continuity problem of functions of this kind was considered in [2]|. This
problem was also considered in the class of set-valued functions. In this
case F' is called subquadratic set-valued function, if it satisfies inclusion

(2) Flx+y)+ Flx —y) C2F(x) +2F(y), =zyeX

and superquadratic set-valued function, if it satisfies inclusion defined in
such a form:

(3) 2F(z) +2F(y) C F(z +y)+ F(z —y), w=z,yecX.

For usual (i.e. single-valued) functions the properties of subquadratic and
superquadratic functions are quite analogous and, in view of the fact that if
a function F' is subquadratic, then the function —F is superquadratic and
conversely, it is not necessary to investigate functions of these two kinds
individually.

In the case of set-valued functions the situation is different. Even if prop-
erties of subquadratic and superquadratic set-valued functions are similar,
we have to prove them separately.
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If the sign “C” in the inclusions above is replaced by “=", then F' is called
quadratic set-valued function. The class of quadratic set-valued functions
is an important subclass of the class of subquadratic and superquadratic
set-valued functions. Quadratic set-valued functions have already extensive
bibliography (see D. Henney [1], K. Nikodem [4] and W. Smajdor [5]). The
continuity problem of subquadratic and superquadratic set-valued functions
was considered in [6] and [7].

If we enlarge the space of values of a set-valued function F' by a cone K
we can consider K-superquadratic set-valued functions, that is solutions of
the inclusion

(4) Flz+y)+Flx —y) C2F(z)+2F(y)+ K, =z,y€ X.

The concept of K-superquadraticity is related to real-valued superquadratic
functions. Note, in the case when F' is a single-valued real function and
K = [0,00), we obtain the standard definition of superquadratic functions
(1).

Similarly, if a set-valued function F satisfies the following inclusion
(5) 2F(x) +2F(y) C F(z4+y)+ Fle—y)+ K, =zyeX

then it is called K-subquadratic. The K-continuity problem of multifunc-
tion of this kind was considered in [8]. It has been proved there that
a K-subquadratic set-valued function F' defined on 2-divisible topological
group X with non-empty, compact and convex values in a locally convex
topological vector space Y, which is K-continuous at zero and locally K-
bounded in X, is K-continuous everywhere in X.

In this paper we shall consider similar problem for K-superquadratic
set-valued functions. Likewise as in functional analysis we can look for
connections between K-boundedness and K-semi-continuity of set-valued
functions of this kind.

Assuming K = {0} in (4) and (5), we obtain the inclusions (2) and (3).

Let us start with the notations used in this paper. Let Y be a topological
vector space. Let n(Y') denotes the family of all non-empty subsets of ¥
and cc(Y)—the family of all compact and convex members of n(Y). The
term set-valued function will be abbreviated to the form s.v.f.

Recall that a set K C Y is called a cone iff K + K C K and sK C K for
all s € (0, 00).

Definition 1. (cf. [3]) A cone K in a topological vector space Y is said to
be a normal cone iff there exists a base 23 of zero in'Y such that

W=W+K)n(W -K)
for all W € 207.
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Definition 2. (cf. [3]) An s.v.f. F': X — n(Y) is said to be K -upper semi-
continuous (abbreviated K-u.s.c.) at xy € X iff for every neighbourhood V
of zero in'Y there exists a neighbourhood U of zero in X such that

F(z) C F(zg) +V + K
for every x € xo + U.

Definition 3. (cf. [3]) An s.v.f. F: X — n(Y) is said to be K -lower semi-
continuous (abbreviated K-l.s.c.) at xog € X iff for every neighbourhood V
of zero in'Y there exists a neighbourhood U of zero in X such that

F(xg) CF(x)+V+ K
for everyx € xog+ U.

Definition 4. (cf. [3]) An s.v.f. F: X — n(Y) is said to be K-continuous
at xog € X ff it is both K-u.s.c. and K-l.s.c. at xg. It is said to be
K -continuous iff it is K-continuous at each point of X.

Note that in the case where K = {0} the K-continuity of F' means its
continuity with respect to the Hausdorff topology on n(Y").
In this paper we will use the following lemma.

Lemma 1. (cf. [8]) Let Y be a topological vector space and K be a cone
inY. Let A, B, C be non-empty subsets of Y such that A+C C B+C+K.
If B is convexr and C' is bounded, then A C B+ K.

2. THE MAIN RESULT

In the proof of the main theorem we will often use four known lemmas
(see Lemma 1.1, Lemma 1.3, Lemma 1.6 and Lemma 1.9 in [9]). The first
lemma says that for a convex subset A of an arbitrary real vector space Y
the equality (s +t)A = sA + tA holds for every s,t > 0 or (s,t<0). The
second lemma says that in a real vector space Y for two convex subsets
A, B the set A+ B is also convex. The next lemma says that if A C Y is
a closed set and B C Y is a compact set, where Y denotes a real topological
vector space, then the set A+ B is closed. For any sets A, B C Y, where Y
denotes the same space as above, the inclusion A + B C A + B holds and
the equality holds if and only if the set A 4+ B is closed.

Notice that for the cone K the following remark holds.

Remark 1. Let Y be a real topological vector space. If K is a closed cone,
then it is a cone with zero.

Let us adopt the following three definitions which are natural extension
of the concept of the boundedness for real-valued functions.



230 K. TROCZKA-PAWELEC

Definition 5. An s.v.f. F: X — n(Y) is said to be K-lower bounded on
a set A C X iff there exists a bounded set B C'Y such that F(x) C B+ K
forallxz € A. An sov.f. F: X — n(Y) is said to be K-lower bounded at
a point x € X iff there exists a neighbourhood U, of zero in X such that F
1s K-lower bounded on a set x + U,

Definition 6. An s.v.f. F: X — n(Y) is said to be K-upper bounded on
a set A C X iff there exists a bounded set B C'Y such that F(x) C B — K
forallx € A. An su.f. F: X — n(Y) is said to be K-upper bounded at
a point x € X iff there exists a neighbourhood U, of zero in X such that F
18 K-upper bounded on a set x + U,

Definition 7. An s.v.f. F: X — n(Y) is said to be locally K-bounded in
X iff it is both K-upper and K-lower bounded at every point x € X.

Definition 8. We say that 2-divisible topological group X has the property
(%) iff for every neighbourhood V' of zero there exists a neighbourhood W of
zero such that %W cCWwcV.

For the K-superquadratic set-valued functions the following theorem
holds.

Theorem 1. Let X be a 2-divisible topological group with property (%), Y -
locally convex topological real vector space and K C'Y a closed normal cone.
If a K-superquadratic s.v.f. F: X — cc(Y) is K-u.s.c. at zero, F(0) = {0}
and locally K-bounded in X, then it is K-u.s.c. in X.

Proof. Suppose that F' is not K-u.s.c. at a point z € X, i.e. there exists
a neighbourhood V of zero in Y such that for every neighbourhood U of
zero in X we can find z,, € U for which

F(z+z,) € F(2) +V + K.

Take a balanced convex neighbourhood W of zero in Y such that

wcv
and
Fz)+W+KCF(2)+V+K.
Then also
(6) Flz+mz,) ¢ F(z) + W + K.

Let a neighbourhood U of zero in X be arbitrarily fixed. Suppose that

() F(z+ay)+ 28 (2k - 1) Flza) € F(z+ (1= 2F)a2y) + 2FW + K
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for some k € N U {0}. The proof of (7) runs by induction. For k = 0
condition (7) holds with respect to (6). Putting y = z in (4) and using
condition F'(0) = {0}, we have

F(2x) C 4F(z) + K.
An easy induction shows
(8) F2"z) c4"F(x)+ K

for z € X and for all positive integers n € N. By K-superquadraticity of I
and (8), we have

F (z F(1- 2k+1)xu) 4 F(z 4 2y) =
=F (z + Xy — 2ka:u — 2k:cu) + F (z + 2y — 2kxu + 2kxu) C
C 2F (2 -+, — 20, ) +2F (20, ) + K C
9) CoF (z +(1- 2k)1:u) oM p(2,) + K.
In view of the fact that for any sets A,B CY,A+ B C A+ B we get

Fz+(1—-2F)z,)+28W+ K+ K C
CF(z+(1—=2F)z,)+2FW + K

and, consequently,

Flz+(1-=2"z,)+2?W+ K+ K C

(10) CF(z4+(1—-2Fz,)+2"W + K.
By (7) and (10), we obtain

Fz+ ay) + 2F (Qk - 1) F(z,) ¢ F(z + (1 — 2F)zy) + W + K + K.

Notice that for a cone K the equality a K = K holds for every a € (0, 00).
Hence,

(11) 2F (2 + 2,) + 2FF1 (2k - 1) F(za) ¢

¢ 2F(z+ (1 —2F)z,) + 2H1W + K + K.
By (11) and Lemma 1,

OF (2 + 1) + 28! (2k - 1) F(wy) + 22 F(2,) €

¢ 2F(z 4 (1 — 2F)zy,) + 28M1W + K 4 22**1F(z,) + K.
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In view of Remark 1, K is a cone with zero. Therefore by above,

(12)  2F(z+ ay) + 28! (2’“ - 1) F(zy) + 22 F(z) + K ¢

¢ 2F(z 4 (1 — 2F)z,,) + 281W + K 4 2% P (2,) + K.

In view of the fact that the sum of closed and compact sets is closed and
for any sets A,B CY,A+ B = A+ B, in the case where A + B is a closed
set, we get

(13) 2F (2 + (1 — 2F)xy) + 2HH1W + K + 22T P (z,) =

=2F(z+ (1 — 2F)x,,) 4+ 21W + K + 22k+1F(z,,).

Since K is a cone, by (9), we obtain

(14) F(z+ (1 =2)z,) + F(z +2y,) + 2HIW + K C

C2F(z + (1 —2F)zy,) + 261W + K + 2261 F(z,,).

Since F' has closed values, we get

(15) Flz4+x,)+ F(z+ (1 =2Y)p,) +21W + K+ K C

CF(z+ =202+ F(z+zy) + 281W + K + K.
Consequently, by (12-15) we conclude

OF (2 + 24) + 26+ (Q’f - 1) F(zy) + 2% F(z) + K ¢

CF(z+xy)+ F(z+ (1 = 2k)z,) + 2MHIW + K + K.
By convexity of the sets F(z,) i F(z + x,), we obtain

F(z 4 zy) 4+ F(z 4 ) 4+ 28 (2’““ — 1) F(ry)+ K ¢

¢ F(z+zy)+ F(z+ (1 — 2kt)z,,) + 2H1W + K 4+ K.
Therefore,
F(z + z,) + 21 (2’““ - 1) Flza) ¢

¢ F(z+ (1 —2Ft)g,) + 2F1W + K.
We have proved that (7) holds for every neighbourhood U of zero in X
and k=0,1,2...
Since K is a normal cone, there exists a base 20 of neighbourhoods of
zero in Y such that M = (M + K)N (M — K) for all M € 20. We can
choose W7 € 20 and balanced neighbourhood W5 of zero in Y such that

Wy Cc Wy C W.
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Because F' is K-lower bounded on a neighbourhood of z, there exists a neigh-

bourhood Uy of zero in X and a bounded set B; C Y such that
F(Z+t>CBl+K, t € Uy.

Since the set Bj is bounded, there exists A1 > 0 such that

1
B —Whs.
1C)\1 2

Therefore, by above,

1

F(z+1t) C /\—W2+K, t € Up.

1
Similarly, since F' is K-upper bounded on a neighbourhood of z, there exists
a neighbourhood U of zero in X and a bounded set B, C Y such that

F(Z—i—t)CBQ—K, t e U.

Since the set Bs is bounded, there exists Ao > 0 such that

1
B — .
2 C )\2W2

Therefore, by above,

1
F(Z"‘t)C)\*WQ—K, tGUl.
2

Let A := min{A;, A2}. Since W5 is a balanced set, we get

1 1
(16) F(Z—I—t)CXWQ—l—KCXWl—l—K, te U
and

1 1
(17) F(Z—l—t)CXWQ—KCXWﬁ—K, tel.

By (16) and (17), we obtain
1 1
(18) F(Z—Ft)C(/\Wl—FK)ﬁ(AWI—K), teUynNU.
Because of W7 € 20, we have
1 1 1
()\Wl—i- >ﬂ()\Wl ) )\Wl

and, consequently, the following inclusion holds

(19) F@+QC%W

for every t € Uy N Uj.
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Let £ € N be so large that
3
20 P
(20) >
Let U be a symmetric neighbourhood of zero in X such that U+U C UgNU;

and %U C U. Consider two sets 2%U i MW Since F is K-u.s.c. at

zero and F'(0) = {0}, there exists a symmetric neighbourhood Uz of zero
in X such that

1
(21) Us C 27[] cU
and

(22) W+ K, t e Us.

1
F(t) C N =T
There exists z,, € Us such that (7) holds. By (21),
(23) (1—2’“)%:xu—Qka;ueUg—UCU—i—UCUgﬂUl
and by (22),

(24) F(zy) W+ K.

1
“NF@F - 1)

Let a € F (z+ (1—2)2,), b € F(z+,) i c € F(zy). By (19), (20), (23)
and (24), we obtain

1 1 1
b+2k(2k—1)c—aeXW+XW+K+XWC2]“W+K.

Therefore,
b+ 2" (Qk—l)c€F<z+(l—2k)xu> + "W 4 K.
We have proved that
Fz+ay) + 28 (2’f - 1) Flz,) C F (z r(1- 2k)xu) 4 oMW 4 K,
which contradicts (7). O

This article is an introduction to the discussion on the K-continuity
problem for K-superquadratic set-valued functions. In the theory of K-
subquadratic and K-superquadratic set-valued functions an important role
is played by theorems giving possibly weak conditions under which such
multi-functions are K-continuous.
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