PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Badania numeryczne i doświadczalne stateczności i nośności kompozytowych słupów cienkościennych poddanych ściskaniu

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
PL
Abstrakty
PL
W rozprawie zajmowano się zagadnieniem stateczności i procesu zniszczenia ściskanych cienkościennych słupów kompozytowych o przekrojach otwartych. Do opisu zagadnienia stateczności zastosowano badania doświadczalne prowadzone na rzeczywistych konstrukcjach kompozytowych oraz metody obliczeniowe z wykorzystaniem metody analityczno-numerycznej (MAN) oraz metody elementów skończonych (MES). W ramach badań doświadczalnych na wykonanych techniką autoklawową kompozytowych słupach o przekrojach ceowych i omegowych prowadzono analizę stanu krytycznego, pokrytycznego oraz fazy zniszczenia konstrukcji. Rejestracji wyników badań dokonywano z wykorzystaniem metod tensometrii oporowej, laserowego pomiaru ugięć, szybkiej kamery i metody emisji akustycznej. Dodatkowo prowadzono ocenę jakości wytworzonych struktur kompozytowych z zastosowaniem metod nieniszczących NDT, mikrotomografii rentgenowskiej oraz mikroskopii optycznej. Zastosowane techniki umożliwiały lokalizację wewnętrznych wad wytworzonego materiału (porowatości, delaminacji), jak również identyfikację charakteru zjawiska zniszczenia struktury materiału kompozytowego po przeprowadzonych badaniach niszczących. Badania symulacyjne prowadzono z wykorzystaniem dwóch technik obli-czeniowych: metody analityczno-numerycznej oraz metody elementów skończonych. Otrzymano dobrą zgodność jakościową i ilościową wyników obliczeń z wynikami badań doświadczalnych, w szczególności dla stanu krytycznego i pokrytycznego. Potwierdziło to adekwatność opracowanych modeli numerycznych do analizy zagadnienia stateczności badanych konstrukcji kompozytowych. Stan krytyczny opisano, rozwiązując zagadnienie własne. Stany pokrytyczne stanowiące nieliniowe zagadnienie stateczności rozwiązano z wykorzystaniem metody analityczno-numerycznej bazującej na asymptotycznej teorii układów zachowawczych Koitera oraz metody elementów skończonych z wykorzystaniem metody przyrostowo-iteracyjnej Newtona-Raphsona oraz strategii korekcyjnej opartej na kontroli długości łuku w sformułowaniu metody Riksa. Analizę zniszczenia badanych konstrukcji przeprowadzono z wykorzystaniem naprężeniowych kryteriów zniszczenia kompozytu: kryterium maksymalnych naprężeń, kryterium Tsai-Hill’a, kryterium Tsai-Wu oraz kryterium Azzi-Tsai-Hilla. Wykazano jednoznaczność oraz akceptowalną przydatność zastosowanych kryteriów do opisu fazy zniszczenia ściskanych słupów kompozytowych, weryfikując otrzymane wyniki badaniami doświadczalnymi. Na podstawie przeprowadzonych analiz zauważono istotny wpływ układu włókien kompozytu na wartość obciążenia krytycznego i niszczącego. Dotyczy to również otrzymywanych postaci lokalnego wyboczenia ścian słupów, dla których w zależności od zastosowanej konfiguracji kompozytu otrzymywano inne liczby półfal w kierunku wzdłużnym charakteryzujących proces utraty stateczności badanych konstrukcji. Prezentowana praca składa się z jedenastu rozdziałów. Rozdział pierwszy stanowi wprowadzenie w tematykę zagadnienia stateczności oraz zniszczenia cienkościennych struktur kompozytowych. W rozdziale drugim omówiono najważniejsze pozycje literaturowe dotyczące tematyki niniejszej pracy. Najważniejsze cele oraz tezę prezentowanej pracy sformułowano w rozdziale trzecim. Rozdział czwarty zawiera podstawowe równania stateczności oraz właściwości mechaniczne cienkościennych płyt kompozytowych. W rozdziale piątym omówiono wybrane kryteria zniszczenia kompozytów. W rozdziale szóstym przedstawiono metodykę rozwiązania zagadnienia stateczności metodą analityczno-numeryczną (MAN) oraz metodą elementów skończonych (MES). Rozdział siódmy zawiera opis przedmiotu badań, metod wytwarzania i oceny właściwości wytworzonych struktur kompozytowych. W rozdziale ósmym przedstawiono wyniki badan doświadczalnych stanu krytycznego. Rozdział dziewiąty zawiera wyniki analizy analityczno-numerycznej i numerycznej w kontekście wyników badań doświadczalnych. W rozdziale dziesiątym przedstawiono wyniki analizy zniszczenia badanych konstrukcji cienkościennych. Wnioski końcowe pracy zawarto w rozdziale jedenastym.
EN
The thesis deals with of a problem of stability, as well as damage processes taking place in thin-walled composite columns having open cross-sections. In order to describe the stability phenomena, both experimental tests, lead on the real composite structures and computational methods, exploiting an analytical-numerical method, as well as the Finite Element Method (FEM) were performed. Within the framework of experiment a critical state analysis, as well as a postcritical one, comprising the structure’s failure phase were conducted on an Q-type and a C-type channel section composite columns manufactured with the autoclaving technique. The data acquisition process was performed with an electrical strain gage technique, a laser sensor deflection measurement, a high speed camera and an acoustic emission technique. In addition, the columns’ quality check was performed using non-destructive techniques (NDT), an X-ray microtomography and an optical microscopy. The exploited techniques enabled a location of internal flaws (porosity, delamination) of the manufactured composite material, as well as an identification of damage mechanisms of the structure after performing destructive tests. The numerical simulations were lead with the two computational techniques: the analytical-numerical one and the Finite Element Method. A good agreement of the computational and the experimental results was gained, both in qualitative and in quantitative sense, especially for the critical and the postcritical state. This confirmed the aptitude of the elaborated numerical models to be used in the analysis of stability of the examined structures. The critical state was defined by solving the eigenproblem. The postcritical state, being a nonlinear problem of stability was solved by taking advantage of both analytical-numerical method and the Finite Element Method. The former based on the Koiter’s asymptotic theory of conservative systems, whereas the latter exploited the incremental-iterative Newton-Raphson method accompanied by a corrective strategy based on the arc length control in the formulation of the Riks method. The failure analysis of the examined structures was performed using several stress criteria for damage in composites: the maximum stress criterion, as well as the Tsai-Hill, the Tsai-Wu and the Azzi-Tsai-Hill criterion. An acceptable suitability of the applied criteria for the preliminary description of the failure phase of the compressed composite columns was proved by a verification of the numerically gained results with the experimental ones. On the basis of the performed analyses a considerable influence of the composites’ fibre direction sequence on the value of critical load, the failure load and the postcritical stiffness of the structure was observed. This applied also to the received modes of local buckling of the columns’ walls, for which different half-wave numbers were gained in longitudinal direction depending on the composite sequence. The number half-waves characterized the process of stability loss of the examined structures. The performed research enabled an elaboration of a procedure of complex stability and load capacity analysis of thin-walled composite columns having complicated shape of its cross-section. The performed multidisciplinary study within the above described domain enabled sufficient identification and interpretation of the composite structures’ damage processes. The presented thesis comprises eleven chapters. The first one is an intro-duction to the subject of stability and damage problems of thin-walled composite structures. In chapter two, the most important literature items, concerning the subject area of the thesis were discussed. Main goals of the thesis were formulated in chapter three. Chapter four contains basic equations of stability of thin-walled composite plates. In chapter five, chosen criteria of composite failure were talked over. In chapter six, the procedure of solving the stability problem with the analytical-numerical method and with the Finite Element Method was presented. Chapter seven contains a description of the research objects, manufacturing methods and ways of determination of the fabricated composite structures’ properties. In chapter eight, the critical state’s experimental results were presented. Chapter nine contains the results of the analytical-numerical, as well as the numerical analysis within a context of experimental results. In chapter ten, the results of damage analysis of the examined thin-walled structures were collected. The conclusions arising from the thesis were presented in chapter eleven.
Rocznik
Tom
Strony
1--189
Opis fizyczny
Bibliogr. 467 poz., il. kolor., wykr.
Twórcy
autor
  • Katedra Podstaw Konstrukcji Maszyn Wydziału Mechanicznego Politechniki Lubelskiej
Bibliografia
  • 1. Abaqus HTML Documentation.
  • 2. Abdelaziz Y, Hamouine A. A survey of the extended finite element. Comput Struct 86(11-12):1141-51;2008.
  • 3. Aboudi J. Mechanics of Composite Materials: A Unified Micromechanical Approach. Elsevier, Amsterdam, 1991.
  • 4. Adams DF, Carlsson LA, Pipes RB. Experimental Characterization of Advaned Composite Materials. CRC Press Taylor & Francis Group, 2003.
  • 5. Agarwal BL. Postbuckling Behavior of Composite Shear Webs. AlAA Journal, 19(7):933-939;1981.
  • 6. Alfano, G., and M. A. Crisfield: Finite Element Interface Models for the Delamination Analysis of Laminated Composites: Mechanical and Computational Issues. International Journal for Numerical Methods in Engineering, vol. 50, pp. 1701-1736, 2001.
  • 7. Allen DH, Searcy CR. Numerical aspects of a micromechanical model of a cohesive zone. J Reinf Plast Compos 19(3):240-8;2000.
  • 8. Allix O, Ladeveze P. Interlaminar interface modelling for the prediction of delamination. Compos Struct 22, 235-242;1992.
  • 9. Altenbach H, Altenbach J, Kissing W. Structural analysis of laminate and sandwich beams and plates, An introduction into the mechanics of composite. Lubelskie Towarzystwo Naukowe, Lublin, 2001.
  • 10. Ambartsymyan SA. Theory of Anisotropic Plates. Technomic Publishng Co. Inc., Stamford, CT, 1967.
  • 11. Ansys HTML Documentation.
  • 12. Arbelo MA, de Almeida SFM, Donadon MV. An experimental and numerical analysis for the post-buckling behavior of composite shear webs. Composite Structures 93(2):465-473;2011.
  • 13. Ashkenazi EK. Problems of the anisotropy of strength. Mekhankia Polimerov 1:79;1965.
  • 14. Ashton JE, Love TS. Experimental Study of the Stability of Composite Plates, Journal of Composite Materials, 3:230-242;1969.
  • 15. ASTM D 3518. Standard test method for in-plane shear response of polimer matrix composite materials by tensile test of a ±45° laminate. Annual Book of ASTM Standards, 100 Barr Harbor Drive,West Conshohocken, PA 19428, USA, Vol 15.03:151-7;1997.
  • 16. ASTM D 3846. Standard test method for in-plane shear of reinforced plastics. Annual Book of ASTM Standards, 100 Barr Harbor Drive,West Conshohocken, PA 19428, USA,Vol 8.02:479-81;1998.
  • 17. ASTM D 5379. Standard test method for shear properties of composite materials by the V-notched beam method. Annual Book of ASTM Standards, 100 Barr Harbor Drive,West Conshohocken, PA 19428, USA, Vol 15.03:235-47;1997.
  • 18. ASTM D 5467-93. Standard test method for compressive properties of unidirectional polymer matrix composites using a sandwich beam. Annual Book of ASTM Standards, 100 Barr Harbor Drive,West Conshohocken, PA 19428, USA, Vol 15.03; 1997.
  • 19. ASTM D 5528-94a. Standard test method for mode I interlaminar fracture toughness of unidirectional fibre-reinforced polymer matrix composites. Annual Book of ASTM Standards, 100 Barr Harbor Drive,West Conshohocken, PA 19428, USA,Vol 15.03;1997.
  • 20. ASTM D3039M. Standard test method for tensile properties of polymer matrix composite materials. American Society for Testing and Materials, 100 Barr Harbor Drive,West Conshohocken, PA 19428, USA,Vol 15.03;1997.
  • 21. ASTM D790M-93. Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. American Society for Testing and Materials, Annual Book of ASTM Standards,Vol. 08.01;1993.
  • 22. Attard MM. Lateral buckling analysis of beam by the FEM. Computers and Structures 23(2):217-231;1986.
  • 23. Auricchio F, Sacco E. Partial-mixed formulation and refined models for the analysis of composite laminates within an FSDT. Composite Structures 46:103-113;1999.
  • 24. Baker A.A., Dutton S., Kelly D.: Composite Materials for Aircraft Structures. American Institute of Aeronautics and Astronautics, 2004.
  • 25. Barbero EJ, Dede EK, Jones S. Experimental verification of buckling-mode interaction in intermediate-length composite columns. Inter. J Solids Structures 37(29):3919- 3934;2000.
  • 26. Barbero EJ, Raftoyiannis IG. Euler buckling of pultruted composite columns. Composite Structures 24(2):139-147;1993.
  • 27. Barbero EJ, Reddy JN, Teply J. An accurate determination of stresses in thick laminates using a generalized plate theory. Int. Journal for Numerical Methods in Engineering 29:1-14;1990.
  • 28. Barbero EJ, Tomblin J. Euler buckling of thin-walled composite columns. Thin- Walled Structures 17(4):237-258;1993.
  • 29. Barbero EJ, Tomblin J. Prediction and measurement of the post-critical behavior of fiber-reinforced composite columns. Composites Science and Technology 58(8):1335-1341;1998.
  • 30. Barbero EJ. An inelastic damage model for fiber reinforced laminates. J Compos Mater 36(8):941-962;2002.
  • 31. Barbero EJ: Finit Element Analysis of Composite Materials. CRC Press Taylor & Francis Group, 2008.
  • 32. Barsoum RS, Gallagher RH Finite element analysis of torsional and torsionalflexural stability problems. Int. J. Num. Meth. Eng. 2:335-352;1970.
  • 33. Bașar Y, Itskov M, Eckstein A, Composite laminates: nonlinear interlaminar stress analysis by multi-layer shell elements. Computer Methods in Applied Mechanics & Engineering 185:367-397;2000.
  • 34. Basu S, Waas AM, Ambur RD. Prediction of progressive failure in multidirectional composite laminated panels. Int J Solids Struct 44(9):2648-76;2007.
  • 35. Batoz J L, B athe K J, H o LW. A study o f t hree-node triangular plate bending elements. Int. J. Num. Meth. Eng. 12(12):1771-1812;1980.
  • 36. Bazant Z.P., Cedolin L., Stability of structures. Elastic, inelastic, fracture and damage theories. Oxford University Press, 1991.
  • 37. Bazant ZP, Cedolin L. Stability of structures. Elastic, inelastic, fracture and damage theories. World Scientific Publishing Co. Pte. Ltd. 2010.
  • 38. Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. Int J Numer Meth Eng 45(5):601-20;1999.
  • 39. Benito R, Sridharan S. Interactive buckling analysis with finite strips. Int. J. Num. Meth. 21:145-161;1985.
  • 40. Benito R, Sridharan S. Mode interaction in thin-walled structural members. J. Struct. Mech. 12(4):517-542;1985.
  • 41. Benzeggagh ML, Kenane M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixedmode bending apparatus. Compos Sci Technol 56:439-49;1996.
  • 42. Berthelot J M. Composite Materials - Mechanical Behaviour and Structural Analysis. Springer Verlag, New York Inc, 1999.
  • 43. Bieniaś J., Dębski H., Surowska B., Sadowski T.: Analysis of microstructure damage in carbon/epoxy composites using FEM, Computational Materials Science, 64: 168-172, 2012.
  • 44. Bieniaś J., Dębski H.: Numeryczna analiza tarcz kompozytowych zbrojonych włóknami szklanymi i węglowymi w warunkach złożonego stanu obciążenia. Kompozyty nr 2/2010, str. 127-132, 2010.
  • 45. Bogdanovich AE, Yushanov SP. Three-dimensional variational analysis of Pagano’s problems for laminated composite plates. Composites Science & Technology 60:2407-2425;2000.
  • 46. Bogy DB. Edge-bonded dissimilar orthogonal elastic wedges under normal and shear loading. J. Appl. Mech. 35:460-466;1968.
  • 47. Bohse J. et al.: Damage analysis of Plymer Matrix Composites by Acoustic Emission Testing. DGZfP-Proceedings BB 90-CD, 339-348.
  • 48. Bose P, Reddy J N. Analysis of composite plates using various plate theories Part 2: Finite element model and numerical results, Structural Engineering & Mechanics 6:727-746; 1998.
  • 49. Boutaous A, Peseux B, Gornet L, Belaidi A. A new modeling of plasticity coupled with the damage and identification for carbon fibre composite laminates. Compos Struct 74(1):1-9;2006.
  • 50. Bradford MA, Hancock GJ. Elastic interaction of local and lateral buckling in beams. Thin-Walled Structures 2:1-25;1984.
  • 51. Bradford MA. Inelastic distortional buckling of I-beams. Computers and Structures 24(6):923-933;1986.
  • 52. Bradford MA. Lateral-distortional buckling of tee-section beams. Thin-Walled Structures 10:13-30;1990.
  • 53. Brewer JC, Lagacé PA. Quadratic stress criterion for initiation of delamination. J Compos Mater 22:1141-55;1988.
  • 54. Bronshtein J.N, Semendyayev K.A.: Guide Book to Mathematics. Zü-rich, Part6: “Interpretation of Experimental Results”, 1973.
  • 55. Brown R. Handbook of polymer testing: physical methods. Marcel Dekker, Inc., New York, 1999.
  • 56. Budiansky B.: Theory of buckling and post-buckling behaviour of elastic structures. Advances in Applied Mechanics, 14, Acad. Press, 1-65,1974.
  • 57. Budiansky B, Hutchinson, JW. Buckling: Progress and Challenge. Trends in Solid Mechanics, edited by Besseling J.F., van der Heijden A.M., Delft University Press,1979.
  • 58. Buryachenko V. Micromechanics of Heterogeneous Materials. Springer, 2007.
  • 59. Bush HG. Experimental Evaluation of Two 36" x 47" Graphite/Epoxy Sandwich Shear Webs. NASA TM X-72767, 1975.
  • 60. Buskell N, Davis GAO i Stevens KA. Postbuckling Failure of Composite Panels, in Composite Structures 3, I. H. Marshall, ed., Elsevier Applied Science, London, New York, 290-314;1985.
  • 61. Byskov E, Hansen JC. Postbuckling and imperfection sensitivity analysis of axially stiffenened cylindrical shells with mode interaction. J. Struct. Mech. 8(2):205- 224;1980.
  • 62. Byskov E, Hutchinson JW. Mode interaction in axially stiffened cylindrical shells. AIAA, 15(7):941-948;1977.
  • 63. Byskov E. Applicability of an asymptotic expansion for elastic buckling problems with mode interaction. AIAA, 17(6):630-633;1979.
  • 64. Byskov E. Smooth postbuckling stresses by a modified finite element method. Int. J. Num. Meth. Eng. 28:2877-2888;1989.
  • 65. Camanho PP, Davila CG, Moura MF. Numerical simulation of mixed-mode progressive delamination in composite materials. J Compos Mater 37(16):1415- 38;2003.
  • 66. Camanho, P. P., and C. G. Davila: Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials. NASA/TM-2002-211737, pp. 1-37, 2002.
  • 67. Camanho PP, Maimí P, Dávila CG. Prediction of size effects in notched laminates using continuum damage mechanics. Compos Sci Technol 67(13):2715-27;2007.
  • 68. Camanho PP, Pinho ST, Davila CG, Remmers J: Mechanical Response of Composites. Springer Science+Business Media B.V. 2008.
  • 69. Campbell, F.C.: Manufacturing Processes for Advanced Composites, Elsevier Ltd,2004.
  • 70. Campbell F.C.: Manufacturing Technology for Aerospace Structural Materials. Elsevier, 2006.
  • 71. Campbell FC. Structural Composite Materials. ASM International 2010.
  • 72. Cantor B., Assender H., Grant P.: Aerospace Materials. IOP Publishing Ltd, 2001.
  • 73. Capitani V., Capriolo M., Sendi D.: Characterization of Casting Defects in Composite Carbon Fiber Material Detected by Ultrasonic Inspection, www.ndt.net/?id=10722,2011.
  • 74. Carlsson LA, Gillespie JW (pod red.). Delaware Composites Design Encyclopedia. Technomic Publishing Company, Lancaster, PA, Volumes 1-6, 1991.
  • 75. Carlsson LA, Kardomateas GA. Mechanics of Sandwich Composites Structural and Failure. Springer Science+Business Media B.V. 2011.
  • 76. Carrera E. Mixed layer-wise models for multilayered plates analysis, Composite Structures 43:57-70;1998.
  • 77. Cazeneuve C., Joguet P., Maile J. C., Oytana C.: Predicting the mechanical behaviour of Kevlar/epoxy and carbon/epoxy filament-wound tubes. Composites,t. 23,nr 6, s. 415 ÷424,1992.
  • 78. Chailleux A, Hans Y, Verchery G. Experimental study of the buckling of laminated composite columns and plates. Inter. J Mechanical Sciences 17(8):489-498;1975.
  • 79. Chamis C.C.: Failure Criteria for Filamentary Composites. NASA Tu-D-5367, 1967.
  • 80. Chang FK, Chang KY. A progressive damage model for laminated composites containing stress concentrations. J Compos Mater 21:834-55;1987.
  • 81. Chang FK, Lessard LB. Damage tolerance of laminated composites containing an open hole and subject to compressive loadings: part I - analysis. J Compos Mater 25:2-43;1991.
  • 82. Chang TY, Sawamiphakdi K. Large deformation analysis of laminated shells by finite element method. Computers & Structures 13:331-340;1981.
  • 83. Chang R. R.: Experimental and theoretical analyses of first-ply failure of laminated composite pressure vessels. Composite Structures,t. 49,s. 237 ÷ 243,2000.
  • 84. Chaplin CP, Palazotto AN. The collapse of composite cylindrical panels with variousthickness using Finite Element Analysis. Computers & Structures 60:797;1996.
  • 85. Chawla KK. Composite Materials - Science and Engineering. Springer-Verlag, 1987.
  • 86. Chou SM, Rhodes. Review and Complilation of Experimental Results on Thin-Walled Structures. Computers & Structures 65(1): 47-67, 1997.
  • 87. Christensen RM. Mechanics of Composite Materials. J. Wiley & Sons, 1979.
  • 88. Christensen RM. Stress based yield/failure criteria for fiber composites. Int J Solid Struct 34(5):529-43;1997.
  • 89. Christensen RM. Tensor transformations and failure criteria for the analysis of fiber composite materials. J Compos Mater 22:874-97;1988.
  • 90. Cichoń C.: Nieliniowa analiza stateczności konstrukcji prętowych w ujęciu MES. Wydaw. Politechniki Krakowskiej, Monografia, 38, Kraków, 1985.
  • 91. Coan JM. Large-Deflection Theory for Plates With Small Initial Curvature Loaded in Edge Compression. ASME, J. Applied Mechanics, 18:143-151;1951.
  • 92. Cox BN, Flanagan G. Handbook of Analytical Methods for Textile Composites. NASA Contractor Report 4750, 1997.
  • 93. Cox BN, Yang QD. Cohesive models for damage evolution in laminated composites. Int J Fract 133(2):107-37;2005.
  • 94. Crisfield MA. An arc-length method including line searches and accelerations. Int J Numer Meth Eng 19(8):1269-89;1983.
  • 95. Cristescu ND, Craciun ND, Soós E. Mechanics of elastic composites. Chapman & Hall/CRC, 2004.
  • 96. Cuntze RG, Freund A. The predictive capability of failure mode concept-based strength criteria for multidirectional laminates. Compos Sci Technol 64:344-77; 2004.
  • 97. Daniel IM, Ishai O. Engineering Mechanics of Composite Materials. Oxford University Press, 1994.
  • 98. Datoo MH. Mechanics of Fibrous Composites. Elsevier, 1991.
  • 99. Davidson BD, Zhao W. An accurate mixed-mode delamination failure criterion for laminated fibrous composites requiring limited experimental input. J Compos Mater 41(6):679-702;2007
  • 100. Davila CG, Camanho PP, Rose CA. Failure criteria for FRP laminates. J Compos Mater 39(4):323-45;2005.
  • 101. Dávila CG, Camanho PP. Failure criteria for FRP laminates in plane stress. NASA/ TM-2003-212663, 2003.
  • 102. Davis JG, Zender GW. Compressive Behavior of Plates Fabricated from Glass Filaments and Epoxy Resin. NASA TN D-3918, 1967.
  • 103. Davis JG. Compressive Strength of Fiber Reinforced Composite Materials. NASA TM X-71992, 1974.
  • 104. Dąbrowski H.: Wytrzymałosc polimerowych kompozytów włóknistych. Oficyna Wydawnicza Politechniki Wrocławskiej,Wrocław,2002.
  • 105. de Borst R, Sadowski T. Lecture Notes on Composite Materials. Current Topics and Achievements. Springer Science+Business Media B.V. 2008.
  • 106. Decolon C. Analysis of Composite Structures. Hermes Penton Science Ltd, London 2002.
  • 107. Dennis ST, Palazotto AN. Large displacement and rotational formulation for laminated shells in-cluding parabolic transverse shear, Int. Journal of Non-Linear Mechanics 25:67-85;1990.
  • 108. Desai YM, Ramtekkar GS, Shah AH. A novel 3D mixed finite-element model for statics of angle-ply laminates. Int. Journal for Numerical Methods in Engineering 57:1695-1716;2003.
  • 109. Dębski H.:, Praca ścinanej płyty usztywnionej profilami zamkniętymi w warunkach deformacji zakrytycznej, Folia Societalis Scientiarum Lublinen-sis, vol. 7, s. 7-19, 1998.
  • 110. Dębski H.: Stany pokrytycznej deformacji cienkościennych ustrojów nośnych usztywnianych profilami zamkniętymi z zastosowaniem w budowie maszyn. Praca doktorska, Politechnika Lubelska, Lublin, 2003.
  • 111. Dębski H.: Numeryczno-eksperymentalna analiza stanów zakrytycznej deformacji cienkościennych ustrojów nośnych w warunkach skręcania nieswobodnego, rozdział IV monografii „Zagadnienia interdyscyplinarne projektowania inżynierskiego” pod red. J.Jonaka, LTN, str. 54-73, 2009.
  • 112. Dębski H.: Przykłady modelowania MES cienkościennych struktur kompozytowych stosowanych w konstrukcjach lotniczych, Monografia pod red. G.Wróbla: Polimery i kompozyty konstrukcyjne, str. 100-102, 2010.
  • 113. Dębski H.: Numerical FEM analysis of aviation load carrying capacity structure constructed from composite materials, 14th European Conference on Composite Materials, Budapeszt-Węgry, Paper ID: 627-ECCM14, 2010.
  • 114. Dębski H.: Experimental investigation of post-buckling behavior of composite column with top-hat cross section, Stability of Structures XIII-th Symposium, Zakopane, 2012.
  • 115. Dębski H., Bieniaś J.: Numeryczne modelowanie właściwości struktur kompozytowych na przykładzie fragmentu łopaty śmigłowca, KOMPOZYTY nr 2/2010, str. 170-174, 2010.
  • 116. Dębski H., Ferdynus M.: Analiza numeryczna i eksperymentalna weryfikacja formy deformacji walcowej powłoki o przekroju otwartym w warunkach skręcania nieswobodnego, XXII Sympozjon Podstaw Konstrukcji Maszyn str. 291-296, Gdynia-Jurata, 2005.
  • 117. Dębski H., Jonak J.: Numeryczna analiza walcowej powłoki usztywnionej profilami zamkniętymi w warunkach skręcania nieswobodnego, Zbiór refe-ratów XV Konferencja NT. „Metody i środki projektowania wspomaganego komputerowo”, str. 79-85, Kazimierz Dolny, 12-14 października, 2005.
  • 118. Dębski H., Jonak J.: Analiza MES płyty prostokątnej usztywnionej profilami zamkniętymi, Czasopismo Naukowo-Techniczne - Górnictwo Odkrywkowe, Instytut Górnictwa Odkrywkowego, Wrocław nr 5-6/2006, str. 122-125, 2006.
  • 119. Dębski H., Kopecki H.: Stan zakrytycznej deformacji płyty prostokątnej usztywnionej profilami zamkniętymi, XIX Sympozjon Stateczności Konstrukcji, Zakopane, 2000.
  • 120. Dębski H., Kubiak T.: Buckling and post-buckling numerical analysis of thinwalled composite beam with open cross-section, ECCM15 - 15TH Eu-ropean Conference on Composite Materials, Venice, Italy, 24-28 June, 2012.
  • 121. Dębski H., Kubiak T., Teter A.: Buckling and post-buckling behavior of channelsection composite profiles with various sequences of plies, Stability of Structures XIII-th Symposium, Zakopane, 2012.
  • 122. Dębski H., Kubiak T., Teter A.: Buckling and post-buckling behavior of thinnwalled composite chnnel section beam, Mechanics of Nano, Micro and Macro Composite Structures, Politecnico di Torino, 18-20 June, 2012.
  • 123. Dolbow J, Moës N, Belytschko T. Discontinuous enrichment in finite elements with a partition of unity method. Finite Elem Anal Des 36(3-4):235-60;2000.
  • 124. Donaldson SL. Fracture toughness testing of graphite/epoxy and graphite/peek composites. Composites 16(2):103-12;1985.
  • 125. Dong SB, Pister KS, Taylor RL. On the theory of laminated anisotropic shells and plates. J. Aerosp. Sci., 969-975;1962.
  • 126. Donnell L.M., „On the application of Southwell’s method for the analysis of buckling tests”, Timoshenko 60’th Anniv. Vol. 1, Mc Graw-Hill, N.Y., 1938.
  • 127. Dorninger K, Rammerstorfer F G. A layered composite shell element for elastic and thermoelastic stress and stability analysis at large deformations. Int. Journal for Numerical Methods in Engineering 30:833-858;1990.
  • 128. Dvorkin EN, Bathe KJ. A continuum mechanics based four-node shell element for general nonlinear analysis. Eng. Computations 1(1):77-88;1984.
  • 129. Echaabi J, Trochu F. Failure mode dependent strength criteria for composite laminates. J Reinf Plastic Compos 16(10):926-45;1997.
  • 130. Effendi RR, Barrau JJ, Guedra-Degeorges D. Failure mechanism analysis under compression loading of unidirectional carbon/epoxy composites using micromechanical modeling. Compos Struct 31(2):87-98;1995.
  • 131. Fafard M, Beauleu D, Dhatt C. Buckling of thin-walled members by finite elements. Computers and Structures 25(2):183-190;1987.
  • 132. Feng W, Hoa SV. Partial hybrid finite elements for composite laminates. Finite Elements in Analysis and Design 30:365-382;1998.
  • 133. Ferdynus M., Dębski H.: Koncentracja naprężeń w ściskanych płytach z dwuteową szczeliną pracujących jako element sprężysty, XXII Sympozjon Podstaw Konstrukcji Maszyn, str. 379-384, Gdynia-Jurata, 2005.
  • 134. Ferreira AJM, Barbosa JT. Buckling behaviour of composite shells. Composite Structures 50:93-98;2000.
  • 135. Flesher ND, Herakovich CT. Predicting delamination in composite structures. Compos. Sci. Technol. 66(6):745-754;2006.
  • 136. Fredriksson P, Gudmundson P, Mikkelsen LP. Finite element implementation and numerical issues of strain gradient plasticity with application to metal matrix composites. Int J Solids Struct 46(22-23):3977-87;2009.
  • 137. Gao YF, Bower AF. A simple technique for avoiding convergence problems in finite element simulations of crack nucleation and growth on cohesive interfaces. Model Simul Mater Sci Eng 12(3):453-63;2004.
  • 138. Gaudenzi P, Barboni R, Mannini A. A finite element evaluation of single-layer and multi-layer theories for the analysis of laminated plates, Composite Structures 30:427-440;1995.
  • 139. Gay D , Hoa S V, Tsai SW: Composite Materials. Design and Applications. CRC Press LLC, 2003.
  • 140. German J. Podstawy mechaniki kompozytów włóknistych. Politechnika Krakowska, Kraków 2001.
  • 141. Ghugal Y M, Shimpi R P. A r eview o f r efined s hear d eformation theories o f i sotropic and anisotropic laminated plates, Journal of Reinforced Plastics and Composites 21:775-813;2002.
  • 142. Gibson RF. Principles of Composite Material Mechanics. McGraw-Hill, Inc, 1994.
  • 143. Giner E, Sukumar N, Tarancón JE, Fuenmayor FJ. An Abaqus implementation of the extended finite element method. Eng Fract Mech 76(3):347-68;2009.
  • 144. Goldenblat II, Kopnov VA. Strength of glass-reinforced plastics in the complex stress state. Mekhanika Polimerov 1(54);1965.
  • 145. Goltermann P, Mollman H. Interactive buckling in thin-walled beams - II. Applications. Int. J. Solids Structures 25(7):729-749;1989.
  • 146. Gosse JH, Christensen S. Strain invariant failure criteria for polymers in composite materials. AIAA Paper. AIAA-2001-1184;2001.
  • 147. Goyal VK, Johnson ER, Dávila CG. Irreversible constitutive law for modelling the delamination process using interfacial surface discontinuities. Compos Struct 65(3-4): 289-305;2004.
  • 148. Grant P, Rousseau CQ (red.). Composite Structures: Theory and Practice. ASTM Stock Number: STP 1383, 2001.
  • 149. Greenhalgh ES. Failure analysis and fractography of polymer composites. Woodhead Publishing Limited and CRC Press LLC, 2009.
  • 150. Greszczuk LB. Microbuckling of lamina-reinforced composites. Composite materials: testing and design (third conference). ASTM STP, vol. 546. American Society for Testing and Materials, pp. 5-29;1974.
  • 151. Grimaldi A, Pignataro M. Post-buckling behaviour of thin-walled open cross-section compression members. J. Struct. Mech., 7(2):143-159;1979.
  • 152. Groenwold A, Stander N. A 24 dof four-node flat shell finite element for general unsymmetric or-thotropic layered composites, Engineering Computations 15:518-543; 1998.
  • 153. Gryboś R. Stateczność konstrukcji pod obciążeniem uderzeniowym. PWN, Warszawa- Poznań, 1980.
  • 154. Guidault PA, Allix O, Champaney L, Cornuault C. A multiscale extended finite element method for crack propagation. Comput Meth Appl Mech Eng 197(5):381-99; 2008.
  • 155. Gurdal Z, Haftka RT, Hajela P: Desidn and Opitimization of Laminated Composite Materials. John Wiley&Sons, INC. 1999.
  • 156. Ha SK, Jin KK, Huang Y. Micro-mechanics of failure (MMF) for continuous fiber reinforced composites. J Compos Mater 42(18):1873-95;2008.
  • 157. Haas D J, Lee W . A nine-node assumed-strain finite element for composite plates and shells. Computers & Structures 26:445-452;1987.
  • 158. Habermehl J., Lamarre A.: Ultrasonic Phased Array tools for composite inspection during maintenance and manufacturing. 17th World Conference on Nondestructive Testing, Shanghai, China,2008.
  • 159. Haftka RT, Mallet RH, Nachbar W. Adaption of Koiter method to finite element analysis of snap-througt bucklning behaviour. Int. J. Solids Struct. 7:1427-1445; 1971.
  • 160. Haga O, Hayashi N, Kasuya K: Failure Criterion of Glass Fabric Reinforced Plastic Laminates. NASA TM-88406, 1986.
  • 161. Hahn HT, Johnnesson T. A correlation between fracture energy and fracture morphology in mixed-mode fracture of composites. In: Mechanical behaviour of materials - IV, Stockholm. pp. 431-8;1983.
  • 162. Hahn HT. A mixed-mode fracture criterion for composite materials. Compos Technol Rev 5:26-9;1983.
  • 163. Harris GZ. The Buckling and Postbuckling Behavior of Composite Plates under Biaxial Loading, International Journal of Mechanical Sciences, 17:187-202;1975.
  • 164. Hashemi S, Kinloch AJ. Interlaminar fracture of composite materials. In: Matthews FL et al., editors. 6th ICCM & 2nd ECCM. New York: Elsevier Applied Science. pp. 254-64;1987.
  • 165. Hashemi S, Kinloch AJ. The effect of geometry, rate and temperature on the mode I, mode II and mixed-mode I/II interlaminar fracture of carbonfibre/poly (ether-ether ketone) composites. J Compos Mater 24:918-56;1990.
  • 166. Hashemi S, Williams JG. Mixed-mode fracture in fiber-polymer composite laminates. In: O’Brien TK, editor. Composite materials: fatigue and fracture, vol. 3. ASTM STP 1110. W. Conshohocken (PA): ASTM Int.; 1991.
  • 167. Hashin Z, Rosen BW. The elastic moduli of fiber-reinforced materials. J. Appl. Mech., 223-232; 1964.
  • 168. Hashin Z. Failure criteria for unidirectional fiber composites. J Appl Mech 47:329- 334;1980.
  • 169. Hashin Z. Theory of Fiber Reinforced Materials. NASA CR-1974, 1972.
  • 170. Hayashi T. Analytical study of interlaminar shear stresses in a laminated composite plate. Trans. Jpn. Soc. Aeronaut. Space Sci., 43-48;1967.
  • 171. Hayashi T. On the elastic constants and stiffness of orthogonal anisotropic plates. J. Soc. Aeronaut. Eng. Nippon 8(69):601-626;1941.
  • 172. Herakovich CT. Composite laminates with negative through-the-thickness Poissons ratios. J Compos Mater, 447-455;1984.
  • 173. Herakovich CT. Mechanics of Fibrous Composites. John Wiley & Sons, Inc., New York 1998.
  • 174. Herakovich CT. Review. Mechanics of composites: A historical review. Mechanics Research Communications 41:1- 20;2012.
  • 175. Hibbit, Karlsson, Sorensen. ABAQUS user’s manual. Version 6.8; 2007.
  • 176. Hill R.: The Mathematical Theory of Plasticity. Oxford University Press, London 1950.
  • 177. Hill R. Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357-372;1963.
  • 178. Hill R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A65, 349;1952.
  • 179. Hinton MJ, Kaddour AS, Soden PD. Failure Criteria in Fibre Reinforced Polymer Composites: The World-Wide Failure Exercise. Elsevier Science Ltd, 2004.
  • 180. Hinton MJ, Soden PD. Predicting failure in composite laminates: the background to the exercise. Compos Sci Technol 58(7):1001-10;1998.
  • 181. Hodgkinson JM (pod red.). Mechanical testing of advanced fibre composites. Woodhead Publishing Limited, Abington Hall, Abington, 2000.
  • 182. Hoffman O. The brittle strength of orthotropic material. J Compos Mater 1(2):200- 206;1967.
  • 183. Hu N (pod red.): Composites and Their Properties. InTech Rijeka, Croatia, 2012.
  • 184. Huang H, Springer GS, Christensen RM. Predicting failure in composite laminates using dissipated energy. J Compos Mater 37(23):2073-99;2006.
  • 185. Huang ZM, Zhou YX. Strength of Fibrous Composites. Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg 2011.
  • 186. Huang ZM. Failure analysis of laminated structures by FEM based on nonlinear constitutive relationship. Compos Struct 77(3):270-92007.
  • 187. Huang ZM. Inelastic and failure analysis of laminate structures by ABAQUS incorporated with a general constitutive relationship. J Reinf Plast Compos 26(11):1135-81;2007.
  • 188. Huber MT. Die theorie der rechteckigen anisotropen Platten, mit besonderer Berucksichtigung der armierten. s.n., Lemberg, Poland, 1921.
  • 189. Hutchinson JW, Koiter WT. Postbuckling theory. Applied Mechanics Reviews, 1353-1366; 1970.
  • 190. Huynh DBP, Belytschko T. The extended finite element method for fracture in composite materials. Int J Numer Meth Eng 77(2):214-39;2009.
  • 191. Hyer MW. Mechanics of unsymmetric laminates. In: Handbook of Composites, 2, Structures and Design. North-Holland, Amsterdam, pp. 85-114;1988.
  • 192. Hyla I. Elementy mechaniki kompozytów. Wydawnictwo Politechniki Śląskiej, Gliwice 1995.
  • 193. Jemielita G. Coefficients of shear correction in transversely nonhomogeneous moderately thick plates, Journal of Theoretical and Applied Mechanics 40:73-84;2002.
  • 194. Jemioło S.: Warunki plastycznosci oraz hipotezy wyte_eniowe materiałów ortotropowych i transwersalnie izotropowych. Przeglad literatury. Niezmiennicze sformułowanie relacji konstytutywnych.Prace Naukowe Politechniki Warszawskiej, Budownictwo, z. 131, s. 5÷51,1996.
  • 195. Jensen DW and Lagace PA. Influence of Mechanical Couplings on the Buckling and Post-buckling of Anisotropic Plates. AIAA Journal, 26(10):1269-1277;1988.
  • 196. Jones R.M.: Mechanics of composite materials. International Student Edition, McGraw-Hill Kogakusha, Ltd., Tokyo 1975.
  • 197. Jones R.: Mechanics of composite materials. 2/E, Taylor&Francis, USA 1998.
  • 198. Jones RM. Mechanics of composite materials. Taylor & Francis, Inc., Philadelphia, PA 1999.
  • 199. Jun SM, Hong CS. Buckling behavior of laminated composite cylindrical panels under axial compression. Computers & Structures 29:479-490;1988.
  • 200. Jurewicz B.: Analiza metod doświadczalnych stosowanych do wyznaczania obciążeń krytycznych − praca magisterska, Instytut Mechaniki Stosowanej Politechniki Łódzkiej, 1985.
  • 201. Kachanov LM. Time of the rupture process under creep conditions. IVZ Akad Nauk SSR Otd Tech Nauk 8:26-31;1958.
  • 202. Kam T . Y., Sher H. F., Chao T. N.: Predictions of deflection and first ply failure load of thin laminated composite plates via the finite element approach. International Journal of Solids and Structures, t.33, nr3, s.375 ÷ 398,1996. [5]
  • 203. Kaminski BE, Ashton JE. Diagonal Tension Behavior of Boron-Epoxy Shear Panels. Journal of Composite Materials 5:553-558;1971.
  • 204. Kapania RK, Raciti S. Recent Advances in Analysis of Laminated Beams and Plates. Part I: Shear Effects and Buckling. AIAA Journal 27(7):923-934;1989.
  • 205. Kaw AK. Mechanics of composite materials. Taylor & Francis Group, LLC, 2006.
  • 206. Kelly A. (Ed.): Concise Encyclopedia of Composite Materials. Per-gamon Press 1989.
  • 207. Kelly A, Davies GJ. The principle of the fibre reinforcement of metals. Metall. Rev. 10;1-78;1965.
  • 208. Kicher T P, Mandell J E. A Study of the Buckling of Laminated Composite Plates. AIAA Journal 9(4):605-613;1971.
  • 209. Kim CH, Yeh H-Y. Development of a new yielding criterion: the Yeh-Stratton criterion. Eng Fract Mech 47:569-82;1994.
  • 210. Kim JK, Mai YW. Engineered interfaces in fiber reinforced composites. Elsevier Science Ltd 1998.
  • 211. Kim RY, Soni SR. Failure o f composite laminates due to combined i nterlami-nar normal and shear stresses. In: Kawata K, Umekawa S, Kobayashi A, editors. Composites’ 86: recent advances in Japan and the United States, Proceedings of Japan- U.S. CCM-III. pp. 341-50;1986.
  • 212. Koiter WT, van der Neut A. Interaction between local and overall buckling of stiffened compression panels. In: Rhodes J, Walker A.G. (red.), Thin-walled structures, Granada, St.Albans, 1980.
  • 213. Koiter WT. Elastic stability and post-buckling behaviour. In: Proceedings of the Symposium on Nonlinear Problems, Univ. of Wisconsin Press, Wisconsin, 1963.
  • 214. Koiter WT. General theory of mode interaction in stiffened plate and shell structures. WTHD Report 590, Delft 1976.
  • 215. Kollar LP, Spronger GS. Mechanics of Composite Materials. Cambridge University Press, 2003.
  • 216. Kołakowski Z, Kowal-Michalska K (pod red.). Statics, Dynamics and Stability of Structures, vol. 2. Statics, Dynamics and Stability of Structural Elements and Systems. Wydawnictwa Politechniki Łódzkiej, Monografie, Łódź 2012.
  • 217. Kołakowski Z, Królak M, Kowal-Michalska K. Mode interactive buckling of thin-walled composite beam-columns regarding distortional deformations. Int. J. of Engineering Science 37:1577-1596;1999.
  • 218. Kołakowski Z, Królak M. Interactive elastic buckling of thin-walled closed orthotopic beam-columns. Engineering Transactions, 43(4):571-590;1995.
  • 219. Kołakowski Z, Królak M. Modal coupled instabilities of thin-walled composite plate and shell structures. Composite Structures, 76:303-313;2006.
  • 220. Kołakowski Z., Kubiak T.: Multiple interaction of dynamic buckling modes in thinwalled members subjected in-plane pulse loading, Proceedings of 4th International Conference on Coupled Instabilities in Material Structure, Rome, Italy, 27-29 September, 2004.
  • 221. Kołakowski Z, Kubiak T. Load-carrying capacity of thin-walled composite structures. Composite Structures 67:417-426:2005.
  • 222. Kołakowski Z. Influence of modification of boundary conditions on load carrying capacity in thin-walled columns in the second order approximation. Int. J. Solids Structures, 30(19):2597-2609;1993.
  • 223. Kołakowski Z. Interactive buckling of thin-walled beams with open and closed cross-section. Eng. Transactions, 37(2):375-397;1989.
  • 224. Kołakowski Z. Interactive buckling of thin-walled beams with open and closed cross-sections. Thin-Walled Structures 15:159-183;1993.
  • 225. Kołakowski Z. Interakcyjne wyboczenie cienkościennych konstrukcji sprężystych. Zeszyty Naukowe nr 653. Rozprawy Naukowe Politechniki Łódzkiej z. 173. Wydawnictwo Politechniki Łódzkiej, Łódź 1992.
  • 226. Kołakowski Z. Mode interaction in thin-walled trapezoidal column under uniform compression. Thin-Walled Structures 5:329-342;1987.
  • 227. Kołakowski Z. Mode interaction in wide plate with angle section longitudinal stiffeners under compression. Engineering Transactions 37(1):117-135;1989.
  • 228. Kołakowski Z. Mode interaction in wide plate with closed section longitudinal stiffeners under compression. Engineering Transactions 35(4):591-609;1987.
  • 229. Kołakowski Z. On some aspects of the modified TSAI-WU criterion in thin-walled composite structures. Thin-Walled Structures 41(4):357-374;2003.
  • 230. Kołakowski Z. Semi-analytical method for the analysis of the interactive buckling of thin-walled elastic structures in the second order aprproximation. International Journal of Solid and Structures, 33(25):3779-3790;1996.
  • 231. Kołakowski Z. Some aspects of mode interaction in thin-walled stiffened plate under uniform compression. Engineering Transactions 36(1):167-179;1988.
  • 232. Kołakowski Z. Some thoughts on mode interaction in thin-walled columns under uniform compression. Thin-Walled Struct. 7:23-35;1989.
  • 233. Kołakowski Z. Static and dynamic interactive buckling of composite columns. J. of Theoretical and Applied Mechanics, 47(1):177-192;2009.
  • 234. Kołakowski Z., Kowal-Michalska K. (pod red.).Selected problems of instabilities in composite structures. Wyd. Politechniki Łódzkiej, seria Monografie 1999.
  • 235. Kołakowski Z., Teter A.: Influence of local postbuckling behaviour on bending of thin-walled elastic beams with central intermediate stiffeners. Engineering Transactions 43(3):383-396,1995.
  • 236. Kołakowski Z., Teter A.: Interactive buckling of thin-walled closed elastic columnbeams with intermediate stiffeners. International Journal of Solid and Structures, 32(11):1501-1516,1995.
  • 237. Kołakowski Z., Teter A.: Interactive buckling of thin-walled beam-columns with intermediate stiffeners or/and variable thickness. Int. J. Solids Structures, 37(24):3323-3344,2000.
  • 238. Kowal-Michalska K. (red.): Stateczność dynamiczna kompozytowych konstrukcji płytowych. WNT Łódz-Warszawa, 2007.
  • 239. Kopecki T.: Stany zaawansowanych deformacji w projektowaniu cienkościennych ustrojów nośnych. Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów 2010.
  • 240. Kopecki T., Dębski H.: Buckling and post-buckling study of open section cylindrical shells subjected to constrained torsion, The Archive Of Me-chanical Engineering, vol. LIV, number 4, pp. 309-326, 2007.
  • 241. Kopecki T., Dębski H.: Stan zakrytycznej deformacji wielosegmentowej, wielopodłużnicowej konstrukcji cienkościennej poddanej skręcaniu. Badania eksperymentalne oraz nieliniowa analiza numeryczna, Acta Mechanica et Automatica, vol. 4 nr 1(2010), str. 42-47, 2010.
  • 242. Kopecki T., Dębski H.: Post-Critical Deformation State of a Multi-Segment Multi-Member Thin-Shell Structure Subject to Torsional Deflection, Me-chanics and Mechanical Engineering, vol. 14, nr 2/2010 Politechnika Łódzka, str. 233-246, 2010.
  • 243. Krätzig WB, Jun D. Multi-layer multi-director concepts for D-adaptivity in shell theory. Computers & Structures 80:719-734;2002
  • 244. Krätzig WB, Jun D. On ‘best’ shell models - From classical shells, degenerated and multi-layered concepts to 3D. Archive of Applied Mechanics 73:1-25;2003.
  • 245. Kreja I, Schmidt R, Reddy JN. Finite elements based on a first-order shear deformation moderate rotation shell theory with applications to the analy-sis of composite structures. Int. Journal Non-Linear Mechanics 32:1123-1142;1997.
  • 246. Kreja I. A literature review on computational models for laminated composite and sandwich panels. Cent. Eur. J. Eng. 1(1):59-80);2011.
  • 247. Królak M, Mania RJ (pod red.). Statics, Dynamics and Stability of Structures, vol. 1. Stability of Thin-walled Plate Structures. Wydawnictwa Politechniki Łódzkiej, Monografie, Łódź 2011.
  • 248. Królak M. (pod red.). Stany zakrytyczne i nośność graniczna cienkościennych dźwigarów o ścianach płaskich. PWN W-wa-Łódź 1990.
  • 249. Królak M. (pod red.). Stateczność, stany zakrytyczne i nośność cienkościennych konstrukcji o ortotropowych ścianach płaskich. Wyd. Politechniki Łódzkiej, seria Monografie, 1995.
  • 250. Królak M., Kołakowski Z.: Interactive elastic buckling of thin-walled open orthotopic beam-columns, Engineering Transactions, 43(4):591-602,1995.
  • 251. Królak M., Kubiak T., Kołakowski Z.: Stability and load carrying capacity of thinnwalled orthotropic poles of regular polygonal cross-section subject to combined load, Journal of Theoretical and Applied Mechanics, 39 (4), pp.969-988, 2001.
  • 252. Krueger R. Virtual crack closure technique: history, approach, and applications. Appl Mech Rev 57(2):109-43;2004.
  • 253. Kubiak T.: Nieliniowa analiza stateczności ortotropowych cienkościennych prętów o różnych kształtach przekrojów poprzecznych, Praca doktorska, Politechnika Łódzka, Łódź, 1998.
  • 254. Kubiak T. Postbuckling behaviour of thin-walled girders with orthotropy varying widthwise. Int. J. Solids Struct., 38:4839-4855;2001.
  • 255. Kubiak T.: Interactive buckling in thinn-walled beam-columns with widthwise varying orthotropy, Journal of Theoretical and Applied Mechanics, 44 (1), pp.75-90, 2006.
  • 256. Kubiak T.: Interakcyjne wyboczenie dynamiczne cienkościennych słupów. Zeszyty Naukowe Politechniki Łódzkiej nr 998. Rozprawy Naukowe z. 358. Wydawnictwo Politechniki Łódzkiej, Łódź, 2007.
  • 257. Kunniuen MF, Rybicki EF, Griffith WI, Broek D: Fundamental Analysis of the Failure of Polymer-Based Fiber Reinforced Composites. NASA CR-2689, 1976.
  • 258. Kwon YW, Liu CT. Study o f damage evolution in composites using damage mechanics and micromechanics. Compos Struct 38(1-4):133-9;1997.
  • 259. Ladeveze P, Allix O, Daudeville L. Mesomodeling of Damage for Laminate Composites: Application to Delamination. In: Dvorak, G.J. (Ed.), Inelastic Deformation of Composite Materials. Springer-Verlag, New York, pp. 607-622;1990
  • 260. Ladeveze P, Le Dantec E. Damage modelling of the elementary ply for laminated composites. Compos Sci Technol 43:257-67;1992.
  • 261. Ladeveze P, Lubineau G. An enhanced mesomodel for laminates based on micromechanics. Compos. Sci. Technol. 62 (4):533-541;2002.
  • 262. Ladeveze P. A damage computational method for composite structures. Comput. Struct. 44:79-87;1992.
  • 263. Ladeveze P. Sur la Mecanique de l’Endommagement des Composites. In: Compte- Rendus des JNC 5. Pluralis, Paris, pp. 667-683;1986.
  • 264. Ladeveze P. Sur Une theorie de l’Ednommagement Anisotrope. Laboratoire de Mecanique et Technologie, Cachan, France, 1983.
  • 265. Lagace P A, J ensen D W, F inch DC. B uckling o f U nsymmetric C omposite Laminates. Composite Structures. 3:101-123;1986.
  • 266. Lanzi L.A numerical and experimental investigation on composite stiffened panels into post-buckling. Thin-Walled Structures 42(12):1645-1664;2004.
  • 267. Lanzo AD, Garcea G. Koiter's analysis of thin-walled structures by a finite element approach. Int. J. Numerical Methods in Engineering 39(17):3007-3031;1998.
  • 268. Lapczyk I, Hurtado JA. Progressive damage modeling in fiber-reinforced materials. Composites Part A 38(1):2333-41;2007.
  • 269. Laschet G, Jeusette JP. Postbuckling finite element analysis of composite panels, Composite Structures 14:35-48;1990.
  • 270. Lee HP, Harris PJ, Cheng-Tzu TH. A nonlinear finite element computer program for thin-walled member. Thin-Walled Structures 2:355-376;1984.
  • 271. Lee JD. Three dimensional finite element analysis of damage accumulation in composite laminate. Comput Struct 15(33):335-50;1982.
  • 272. Leissa AW. A Review of Laminated Composite Plate Buckling. Applied Mechanics Review 40(5):575-591;1987.
  • 273. Lekhnitskii SG. Anisotropic Plates. Moscow: Gosudarstvennoye IZD-VO. Tekhniko- Theoreticheskiy Literatury, 1957.
  • 274. Lemaitre J, Chaboche JL. Mechanics of solid materials. Cambridge University Press 1990.
  • 275. Lemaitre J. A course on damage mechanics. Berlin: Springer-Verlag; 1992.
  • 276. Leski A. Implementation of the virtual crack closure technique in engineering FE calculations. Finite Elem Anal Des 43(3):261-8;2007.
  • 277. Li R, Kelly D, Ness R. Application of a first invariant strain criterion for matrix failure in composite materials. J Compos Mater 37(22):1977-2000;2003.
  • 278. Libove C. Buckling Pattern of Biaxially Compressed Simple Supported Orthotropic Rectangular Plates. Journal of Composite Materials 17:45-48;1983.
  • 279. Lin WP, Hu HT. Nonlinear analysis of fiber-reinforced composite laminates subjected to uniaxial tensile load. J Compos Mater 36(12):1429-50;2002.
  • 280. Lissenden CJ, Herakovich CT. Comparison of Micromechanics Models for Elastic Properties. Am. Soc. Civil Engineers, New York, pp. 1309-1322;1992.
  • 281. Liu PF, Zheng JY. Progressive failure analysis of carbon fiber/epoxy composite laminates using continuum damage mechanics. Mater Sci Eng A 485(1-2):711-7; 2008.
  • 282. Liu PF, Zheng JY. Recent developments on damage modeling and finite element analysis for composite laminates: A review. Materials and Design 31:3825-3834; 2010.
  • 283. Liu PF, Zheng JY. Review on methodologies of progressive failure analysis of composite laminates. In: Koppel A, Oja J, editors. Continuum mechanics. New York: Nova Science Publishers; 2009
  • 284. Long RS. Static strength of adhesively bonded ARALL-1 joints. J Compos Mater 25:391-415;1991.
  • 285. Loughlan J. The ultimate load sensitivity of lipped channel columns axis imperfection. Thin-Walled Structures 1:75-96;1983.
  • 286. Loughlan J. Thin-walled cold-formed sections subjected to compressive loading. Thin-Walled Structures 16:65-109;1993.
  • 287. Lukoshevichyus RS. Minimizing the Mass of Reinforced Rectangular Plates Compressed in Two Directions in a Manner Conductive toward Stability. Polymer Mechanics 12(6):929-933;1977.
  • 288. Lundquist E.E., „Generalized analysis of experimental observations in problems of elastic stability”, NACA TN 658, Washington, July, 1938.
  • 289. Maa RH, Cheng JH. A CDM-based failure model for predicting strength of notched composite laminates. Composites Part B 33(6):479-89;2002.
  • 290. Mackiewicz S., Góra G.: Ultradźwiękowe badania konstrukcji kompozytowych w przemyśle lotniczym. Nieniszczące Badania Materiałów, Zakopane,2005.
  • 291. Maimi,P.; Camanho,P.P.; Mayugo,J.A.; Turon, A. Matrix cracking and delamination in laminated composites. Part I: Ply constitutive law, first ply failure and onset of delamination, Mechanics of Materials, 43,169-185,2011.
  • 292. Maimi P, Camanho PP, Mayugo JA. A continuum damage model for composite laminates: part I - constitutive model. Mech Mater 39(10):897-908;2007.
  • 293. Maimí P, Camanho PP, Mayugo JA. A continuum damage model for composite laminates: part II - computational implementation and validation. Mech Mater 39(10):909-19;2007.
  • 294. Malmeister A.: Mekh. Polimerov, 2, 4, s. 324-331,1966.
  • 295. Manevich AI. Interactive buckling of stiffened plate under compression. Mekhanika Tverdogo Tela 5:152-159;1988.
  • 296. Manevich AI. Theory of interaction buckling of stiffened thin-walled structures. Prikladnaya Matematika i Mekhanika 46:337-345;1982.
  • 297. Manevich AI. Stability of shells and plates with T-section stiffeners. Stroitelnaya Mekhanika i Raschet Sooruzhenii 2:34-38;1985.
  • 298. Mania R.: Wyboczenie dynamiczne cienkościennych słupów z materiałów lepkoplastycznych. Zeszyty Naukowe Politechniki Łódzkiej nr 1059. Rozprawy Naukowe z. 387. Wyd. Politechniki Łódzkiej, Łódź 2010.
  • 299. Mason K.: Autoclave Quality Outside The Autoclave? High Performance Composites, 3/1/2006.
  • 300. Matzenmiller A, Lubliner J, Taylor RL. A constitutive model for anisotropic damage in fiber-composites. Mech Mater 20(2):125-52;1995.
  • 301. Mayes JS, Hansen AC. A comparison of multicontinuum theory based failure simulation with experimental results. Compos Sci Technol 64(3-4):517-27;2004.
  • 302. Mayes JS, Hansen AC. Composite laminate failure analysis using multicontinuum theory. Compos Sci Technol 64(3-4):379-94;2004.
  • 303. Michopoulos JG, Badaliance R, Chwastyk T, Gause L, Mast P. Effects of computational technology on composite materials research: the case of the dissipated energy density. In: Proceedings of the first hellenic conference on composite materials and structures, Greece; 2-5 July, 1997.
  • 304. Milton GW. The Theory of Composites. Cambridge University Press, 2004.
  • 305. Miracle DB, Donaldson SL. ASM Handbook Volume 21 Composites. ASM International 2001.
  • 306. Moës N, Belytschko T. Extended finite element method for cohesive crack growth. Eng Fract Mech 69(7):813-33;2002.
  • 307. Moës N , D olbow J , B elytschko T . A finite element method for crack growth without remeshing. Int J Numer Meth Eng 46(1):131-50;1999.
  • 308. Moita JS, Mota Soares CM, Mota Soares CA. Buckling behaviour of laminated composite structures using a discrete higher-order displacement model. Composite Structures 35:75-92:1996.
  • 309. Mollman H, Goltermann P. Interactive buckling in thin-walled beams - I. Theory. Int. J. Solids Structures 25(7):715-728;1989.
  • 310. Muc A., Zuchara P. Buckling and failure analysis of FRP faced sandwich plates. Composite Structures, Vol. 48, 145-150, 2000.
  • 311. Muc A. Optymalizacja struktur kompozytowych i procesów technologicznych ich wytwarzania. Księgarnia Akademicka, Kraków, 2005.
  • 312. Muc A.: Projektowanie kompozytowych zbiorników cisnieniowych. Wyd. Politechniki Krakowskiej 1999.
  • 313. Muc A.: Mechanika kompozytów włóknistych. Księgarnia Akademicka, Kraków 2003.
  • 314. Naboulsi SK, Palazotto AN. Non-linear static-dynamic finite element formulation for composite shells. Int. Journal of Non-Linear Mechanics 38:87-110;2003.
  • 315. Narayanaswami R, Adelman HM. Evaluation of the tensor polynomial and Hoffman strength theories for composite materials. J Compos Mater 11(4):366-77; 1977.
  • 316. Neimitz A.: The review of the failure criteria for composites, in Joint Seminary on Failure of Advanced Materials, Francois D. and Golaski L. (Editors),Paris - Kielce,Kielce University of Technology,s.5 ÷ 25, 1996.
  • 317. Nicolais L, Meo M, Milella E (pod red.). Composite Materials. A Vision for the Future. Springer-Verlag London Limited 2011.
  • 318. Nistor I, Pantalé O, Caperaa S. Numerical implementation of the extended finite element method for dynamic crack analysis. Adv Eng Software 39(7):573-87;2008.
  • 319. Noor AK, Peters JM. A posteriori estimates for shear correction factors in multilayered composite cylinders. Journal of Engineering Mechanics ASCE 115:1225- 1244;1988.
  • 320. Noor AK, Shuart MJ (pod red.). Failure Analysis and Mechanisms of Failure of Fibrous Composite Structures. NASA Conference Publication 2278, 1983.
  • 321. Notenboom RP. Finite strip elements in thin plate buckling analysis Attachments. Delft University of Technology, Faculty of Aerospace Engineering, Report LR-642, 1990.
  • 322. Ochelski S. Metody doświadczalne mechaniki kompozytów konstrukcyjnych. WNT Warszawa 2004.
  • 323. Ochoa O, Engblom JJ. Analysis of progressive failure in composites. Compos Sci Technol 28:87-102;1987.
  • 324. Ochoa O, Reddy JN. Finite element analysis of composite laminates. Dordrecht: Kluwer Academic Publishers; 1992.
  • 325. Olsen MD, Bearden TW. A simple flat triangular shell element revisited. Int. J. Num. Meth. Eng. 14(1):51-68;1979.
  • 326. Orifici AC, Herszberg I, Thomson RS. Review of methodologies for composite material modelling incorporating failure. Compos Struct 86(1-3):194-210;2008.
  • 327. Orifici AC, Thomson RS, Degenhardt R, Bisagni C, Bayandor J. A finite element methodology for analysing degradation and collapse in postbuckling composite aerospace structures. J Compos Mater 43:3239-63;2009.
  • 328. Pagano NJ, Yuan FG. The significance of effec-tive modulus theory (homogenization) in composite laminate mechanics. Composites Science and Technology 60:2471-2488;2000.
  • 329. Pahr DH, Rammerstorfer FG. A fast multi-scale laminates. Computers & Structures 82:227-39;2004.
  • 330. Panasenko G. Multi-scale Modelling for Structures and Composites. Springer- Verlag Berlin Heidelberg 2005.
  • 331. Panda SC, Natarajan R. Finite element analysis of laminated composite plates, Int. Journal of Non-Linear Mechanics 14:69-79;1979.
  • 332. Paris F. A Study of Failure Criteria of Fibrous Composite Materials. NASA/CR- 2001-210661, 2001.
  • 333. Parlapalli MR, Soh KC, Shu DW, Ma G. Experimental investigation of delamination buckling of stitched composite laminates. Composites Part A: Applied Science and Manufacturing 38(9):2024-2033;2007.
  • 334. Paul B. Prediction of elastic constants of multiphase materials. Trans. AIME, 218, 36-41;1960.
  • 335. Perez A. M., Gil L., Oller S.: Non-destructive testing evaluation of Low Velocity Impact Damage In Carbon Fiber-Reinforced Laminated Com-posites, ULTRAGARSAS, Vol. 66, No. 2, 2011.
  • 336. Perret A, Mistou S, Fazzini M, Brault R. Global behaviour of a composite stiffened panel in buckling. Part 2: Experimental investigation. Composite Structures 94(2): 376-385; 2012.
  • 337. Perreux D, Robinet D, Chapelle D. The effect of internal stress on the identification of the mechanical behaviour of composite pipes. Compos Part A 37(4):630-5;2006.
  • 338. Peters ST (pod red.). Handbook of Composites. Chapman & Hall/CRC, 1998.
  • 339. Phillips EA, Herakovich CT, Graham LL. Damage development in composites with large stress gradients. Compos Sci Technol 61(5):2169-82;2001.
  • 340. Pietraszkiewicz W.: Geometrically nonlinear theories of thin elastic shells. Advances in Mechanics 12(1):51-130,1989.
  • 341. Pignataro M, Luongo A, Rizzi N. On the effect of the local overall interaction on the postbuckling of uniformaly compressed channels. Thin-Walled Structures 3:283-321;1985.
  • 342. Pignataro M, Luongo A. Asymmetric interactive buckling of thin-walled columns with initial imperfections. Thin-Walled Structures 5:365-386;1987.
  • 343. Pinho ST, Dávila CG, Camanho PP, Iannucci L, Robinson P. Failure models and criteria for FRP under in-plane or three-dimensional stress states including shear non-linearity. NASA/TM-2005-213530, 2005.
  • 344. Pipes RB, Pagano NJ. Interlaminar stresses in composite laminates under uniform axial extension. J. Compos. Mater. 4:538-548;1970.
  • 345. Pister KS, Dong SB.. Elastic bending of layered plates. J. Eng. Mech. Div. 1-10; 1959.
  • 346. PN-EN ISO 14125:2001. Kompozyty tworzywowe wzmocnione włóknem. Oznaczanie właściwości przy zginaniu.
  • 347. PN-EN ISO 14126:2002. Kompozyty tworzywowe wzmocnione włóknem. Oznaczanie właściwości podczas ściskania równolegle do płaszczyzny laminowania.
  • 348. PN-EN ISO 14129:2000. Kompozyty tworzywowe wzmocnione włóknem. Oznaczanie naprężenia ścinającego i odpowiadającego odkształcenia, modułu ścinania i wytrzymałości podczas rozciągania pod kątem +- 45 stopni.
  • 349. PN-EN ISO 14130:2001. Kompozyty tworzywowe wzmocnione włóknem. Oznaczanie umownej wytrzymałości na ścinanie międzywarstwowe metodą krótkiej belki.
  • 350. PN-EN ISO 527-1:1998. Tworzywa sztuczne. Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu. Zasady ogólne.
  • 351. PN-EN ISO 527-4:2000. Tworzywa sztuczne. Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu. Warunki badań kompozytów tworzywowych izotropowych i ortotropowych wzmocnionych włóknami.
  • 352. PN-EN ISO 527-5:2009. Tworzywa sztuczne. Oznaczanie właściwości mechanicznych przy statycznym rozciąganiu. Część 5: Warunki badań kompozytów tworzywowych wzmocnionych włóknami jednokierunkowo.
  • 353. PN-ISO 5893:1999. Urządzenia do badań gumy i tworzyw sztucznych. Badania przy rozciąganiu, zginaniu i ściskaniu (stała prędkość trawersy). Opis.
  • 354. Prepreg technology, Hexcel Publication, March,2005.
  • 355. Puck A.: Festigkeitsanalyse von Faser-Matrix-Laminaten: Modelle für die Praxis, Hanser, München,1996.
  • 356. Puck A, Schürmann H. Failure analysis of FRP laminates by means of physically based phenomenological models. Compos Sci Technol 58:1045-67;1998.
  • 357. Rami HA. Cohesive micromechanics: a new approach for progressive damage modeling in laminated composites. Int J Damage Mech 18(8):691-719;2009.
  • 358. Ramm E. Strategies for tracing the nonlinear response near limit points. In: Nonlinear finite element analysis in structural mechanics. New York: Springer-Verlag; 1981.
  • 359. Rao KP. A rectangular laminated anisotropic shallow thin shell finite element, Computer Methods in Applied Mechanics & Engineering 194:2285-2707;2005.
  • 360. Reddy JN, Arciniega RA. Shear deformation plate and shell theories: From Stavsky to Present. Mechanics of Advanced Materials and Structures 11:535-582;2004.
  • 361. Reddy JSN. Mechanics of Laminated Composite Plates and Shells: Theory and Analysis. CRC Press, Boca Raton, 2004.
  • 362. Reddy YSN, Pandey AK. A first-ply failure analysis of composite laminates. Comput Struct 25(3):371-93;1987.
  • 363. Reeder JR. A bilinear failure criterion for mixed-mode delamination. In: Componeschi Jr ET, editor. Composite materials: testing and design (eleventh volume). ASTM STP 1206. W. Conshohocken (PA): ASTM Int. pp. 303-22;1993.
  • 364. Reeder, J., S. Kyongchan, P. B. Chunchu, and D. R.. Ambur: Post-buckling and Growth of Delaminations in Composite Plates Subjected to Axial Compression. 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Denver, Colorado, vol. 1746, p. 10, 2002.
  • 365. Reissner E, Stavsky Y. Bending and stretching of certain types of heterogeneous aelotropic elastic plates. J. Appl. Mech., 402-408;1961.
  • 366. Rikards R, Chate A, Ozolinsh O. Analysis for buckling and vibrations of composite stiffened shells and plates. Composite Structures 51:361-370;2001.
  • 367. Riks E. An incremental approach to the solution of snapping and buckling problems. Int J Solids Struct 15(7):529-51;1979.
  • 368. Robinson, P., T. Besant, and D. Hitchings: Delamination Growth Predic-tion Using a Finite Element Approach. 2nd ESIS TC4 Conference on Pol-ymers and Composites, Les Diablerets, Switzerland 1999.
  • 369. Rohwer K, Friedrichs S, Wehmeyer C. Analyzing laminated structures from fibrereinforced composite material - an assessment. Technische Mechanik 25:59-79; 2005.
  • 370. Romeo G, Frulla, G. Postbuckling Behaviour of Graphite/Epoxy Stiffened Panels with Initial Imperfections Subjected to Eccentric Biaxial Compression Loading. Journal of Nonlinear Mechanics 32(6):1997.
  • 371. Romeo G. Experimental Investigation on Advanced Composite-Stiffened Structures under Uniaxial Compression and Bending. AIAA Journal, 24(11):1823-1830;1986.
  • 372. Roorda J., „Some thoughts on the Southwell plot”, Proc. ASCE, Journ. of the Engineering Mechanics Division, Vol. 93, No. EM6, 1967.
  • 373. Rotem A, H ashin Z . F ailure modes o f a ngle p ly l aminates. J Compos Mater 9(2):191-206:1975.
  • 374. Rusiński E., Czmochowski J., Smolnicki T.: Zaawansowana metoda ele-mentów skończonych w konstrukcjach nośnych, Oficyna Wydawnicza Politechniki Wrcławskiej, Wrocław, 2000.
  • 375. Rybicki EF. Approximate three-dimensional solutions for symmetric laminates under in-plane loading. J. Compos. Mater. 5:354-360;1971.
  • 376. Saigal S, Kapania RK, Yang TY. Geometrically nonlinear finite element analysis of imperfect laminated shells. J Composite Materials 20:197-214;1986.
  • 377. Shim D.J., Alderliesten R.C., Spearing S.M., Burianek D.A.: Fatigue crack growth prediction in GLARE hybrid laminates. Composites Science and Technology 63 (2003) 1759-1767.
  • 378. Sandhu RS. Ultimate strength analysis of symmetric laminates. AFFDL-TR-73- 137, AD 779927, OH: Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base; 1974.
  • 379. Saravanos DA, Chamis CC: Unified Micromechanics of Damping for Unidirectional Fiber Reinforced Composites. NASA TM-102107, 1989.
  • 380. Satyamurthy K, Khot NS, Bauld NR. An Automated, Energy-Based, Finite- Difference of the Elastic Collapse of Rectangular Plates and Panels. Computers and Structures 11:239-249;1980.
  • 381. Schipperen JHA. An anisotropic damage model for the description of transverse matrix cracking in a graphite-epoxy laminate. Compos Struct 53(3):295-9;2001.
  • 382. Schnars U., Henrich R.: Applications of NDT Methods on Composite Structures in Aerospace Industry, Conference on Damage in Composite Materials, Stuttgart, Germany,2006.
  • 383. Shahid I, Chang FK. An accumulative damage model for tensile and shear failures of laminated composite plates. J Compos Mater 29(7):926-81;1995.
  • 384. Shin CS, Wang CM. An improved cohesive zone model for residual notched strength prediction of composite laminates with different orthotropic lay-ups. J Compos Mater 38(9):713-36;2004.
  • 385. Simitses GJ. Buckling of moderately thick laminanated cylindrical shells: a review. Composites Part B 27B:581-7:1996.
  • 386. Simitses G.J., Hodges D.H., Fundamentals of structural stability . But-terworth- Heinemann, 2006.
  • 387. Singer J, Arbocz J, Weller T. Buckling Experiments. Experimental methods in buckling of thin-walled structure. Basic concepts, columns, beams, and plates. Volume 1. John Wiley & Sons Inc. New York 1998.
  • 388. Singer J, Arbocz J, Weller T. Buckling Experiments. Experimental methods in buckling of thin-walled structure. Shells built-up structures, composites and additional topics. Volume 2. John Wiley & Sons Inc. New York 2002.
  • 389. Soden PD, Hinton JM, Kaddour AS. A comparison of the predictive capabilities of current failure theories for composite laminates. Compos Sci Technol 58(7):1225- 54;1998.
  • 390. Southwell R.V. “On the Analysis of Experimental Observations in Prob-lems of Elastic Stability”, Proceedings, Royal Society, London, Series A, Vol. 135, pp.601- 616, 1932.
  • 391. Soutis C, Beaumont PWR (pod red.). Multi-scale modelling of composite material systems The art of predictive damage modelling. Woodhead Publishing Limited and CRC Press LLC, 2005.
  • 392. Spencer H.H. Walker A.C. “Technique for Measuring The Critical Loads of Columns and Plates”, Paper No. 2290 A SESA Spring Meet-ing,1974.
  • 393. Spootswood MS, Palazotto AN. Progressive failure analysis of a composite shell. Compos Struct 53(1):117-31;2007.
  • 394. Sridharan S (pod red.). Delamination behaviour of composites. Woodhead Publishing Limited and CRC Press LLC 2008.
  • 395. Sridharan S, Ali MA. An improved interactive buckling analysis of thin-walled columns having doubly symmetric sections. Int. J. Solids Structures 22(4): 429-443; 1986.
  • 396. Sridharan S, Benito R. Columns static and dynamic interactive buckling. Journal of Engineering Mechanics, ASCE, 110(1):49-65;1984.
  • 397. Sridharan S, Peng MH. Performance of axially compressed stiffened panels. Int. J. Solids and Structures 25(8):879-899;1989.
  • 398. Sridharan S. Doubly symmetric interactive buckling of plate structures. Int. J. Solids Struct. 19(7):625-641;1983.
  • 399. Staab GH: Laminar composites. Butterworth-Heinemann, 1999.
  • 400. Summerscales J. Microstructural characterisation of fibre-reinforced composites. Woodhead Publishing Ltd and CRC Press LLC, 1998.
  • 401. Sun C. T., Quinn B. J., Tao J., Oplinger D. W., Hughes W. J.: Comparative Evaluation of Failure Analysis Methods for Composite Lamiantes. DOT/FAA/AR-95/109, Office of Aviation Research, Washington, DC, 1996.
  • 402. Sun CT, Jin ZH. Modeling of composite fracture using cohesive zone and bridging models. Compos Sci Technol 66(10):1297-302;2006.
  • 403. Swanson J. ANSYS user’s manual. Version 11.0; 2007.
  • 404. Takano N, Ohnishi Y, Zako M, Nishiyabu K. The formulation of homogenization method applied to large deformation problem for composite materials. Int. Journal of Solids & Structures 37:6517- 6535;2000.
  • 405. Tamin MN (pod red.). Damage and Fracture of Composite Materials and Structures. Springer-Verlag Berlin Heidelberg 2012.
  • 406. Tay TE, Liu G, Yudhanto A, T an V BC. A micro-macro approach to modeling progressive damage in composite structures. Int J Damage Mech 17(1):5-28;2008.
  • 407. Tay T E, T an S HN, T an V BC, G osse J H. D amage p rogression b y t he e lementfailure method (EFM) and strain invariant failure theory (SIFT). Compos Sci Technol 65(6):935-44;2005.
  • 408. Tennyson RC. Buckling of Laminated Composite Cylinders: A Review, Composites 17-24;1975.
  • 409. Teter A.: Static and dynamic interactive buckling of isotropic thin-walled closed columns with variable thickness. Thin-Walled Structures 45:936-940, 2007.
  • 410. Teter A.: Wielomodalne wyboczenie cienkościennych użebrowanych słupów obciążonych impulsem ściskającym. Zeszyty Naukowe Politechniki Łódzkiej nr 1063. Rozprawy Naukowe z. 390. Wydawnictwo Politechniki Łódzkiej, Łódź 2010.
  • 411. Teter A., Kołakowski Z.: Interactive buckling of thin-walled open elastic columnbeams with intermediate stiffeners. International Journal of Solid and Structures, 33(3):315-330,1996.
  • 412. Teter A., Kołakowski Z.: Zastosowanie ogólnej asymptotycznej teorii stateczności Koitera do oceny nośności granicznej konstrukcji cienkościennych z żebrami pośrednimi. Folia Societatis Scientiarum Lublinensis, 9:124-134,2000.
  • 413. Teter A., Kolakowski Z.: Lower bound estimation of load-carrying capaci-ty of thin-walled structures with intermediate stiffeners, Thin-Walled Struc-tures 39 (8), 649-669), 2001.
  • 414. Teter A., Kołakowski Z.: Comparison of the theoretical load carrying capacity with the experimental data for same thin-walled plates and beams with intermediate stiffeners. Archive of Mechanical Engineering, XLVIII(1):29-54,2001.
  • 415. Teter A., Kołakowski Z. Comparison of the theoretical load carrying capacity with the experimental data for same thin-walled plates and beams with intermediate stiffeners. Archive of Mechanical Engineering, XLVIII(1):29-54;2001.
  • 416. Teter A., Kołakowski Z.: Stability and load carrying capacity of thin-walled corrugated trapezoidal plate. International Journal of Applied Mechanics and Engineering, 6(2):311-323,2001.
  • 417. Teter A., Kołakowski Z.: Natural frequencies of thin-walled structures with central intermediate stiffeners or/and variable thickness. Thin-Walled Structures 41:291-316, 2003.
  • 418. Teter A., Kołakowski Z.: Interactive buckling and load carrying capacity of thin-walled beam-columns with intermediate stiffeners. Thin-Walled Structures 42:211-254,2004.
  • 419. Teter A., Kołakowski Z., Kubiak T. Wyboczenie cienkościennych konstrukcji kompozytowych z żebrami pośrednimi. X Sympozjum Stateczności Konstrukcji, Zakopane, 2003.
  • 420. Teter A., Kołakowski Z.: Buckling of thin-walled composite structures with intermediate stiffeners. Composite Structures, 69(4):421-428,2005.
  • 421. Tereszkowski Z. “Doświadczalna metoda wyznaczania obciążeń kry-tycznych w płytach”, Archiwum Budowy Maszyn, Tom XVII zeszyt 3, Warszawa, 1970.
  • 422. Theocaris PS. Weighing failure tensor polynomial criteria for composites. Int J Damage Mech 1(1):4-46;1992.
  • 423. Thom H.: A review of the biaxial strength of fibre-reinforced plastics. Composites Part A,t. 29A,s. 869 ÷ 886,1998.
  • 424. Thompson JMT, Hunt GW. General theory of elastic stability. Wiley, New York 1973.
  • 425. Tong L, Mouritz AP, Bannister MK: 3D Fibre Reinforced Polymer Composites. ELSEVIER Science Ltd., 2002.
  • 426. Tong L. An assessment of failure criteria to predict the strength of adhesively bonded composite double lap joints. J Reinf Plastic Compos 16(8):698-713;1997.
  • 427. Tsai S. W.: Strength Theories of Filamentary Structures, in Fundamental Aspects on Fibre Reinforced Plastic Composites. Conference Proceedings, R. T. Schwartz and H. S. Schwartz (Editors), Dayton, Ohio, 24 - 26 May 1966, Wiley Interscience, s. 3÷11,New York 1968.
  • 428. Tsai S. W.: Composite Design. United States Air Force Materials La-boratory, Thin Composites, Dayton Paris and Tokyo 1985.
  • 429. Tsai CT, Palazotto AN, Dennis ST. Large-rotation snap-through buckling in laminated cylin-drical panels. Finite Elements in Analysis and Design 9:65-75;1991.
  • 430. Tsai SW, Wu EM. A general theory of strength for anisotropic materials. J. Compos. Mater. 58-80; 1971.
  • 431. Tsai SW. Strength characteristics of composite materials. NASA CR-224; 1965.
  • 432. Tsai SW: Composite Design. Think Composites, Dayton, OH, 1987.
  • 433. Tung TK, Surdenas J. Buckling of Rectangular Orthotropic Plates under Biaxial Loading. Journal of Composite Materials, 21:124-128; 1987.
  • 434. Turon A, Davila CG, Camanho PP. Costa J. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng Fract Mech 74(10):1665-82;2007.
  • 435. Tvergaard V, Hutchinson JW. Effect of strain-dependent cohesive zone model on predictions of crack growth resistance. Int J Solids Struct 33(20-22):3297-308; 1996.
  • 436. Tvergaard V. Imperfections sensitivity of a wide integrally stiffened panel under compression. Int. J. Solids and Struct. 9:177-192;1973.
  • 437. Tvergaard V. Influence of post-buckling behaviour on optimum design of stiffened panels. Int. J. Solids and Struct. 9:1519-1534;1973.
  • 438. van der Heijden AMA. (pod red.). W.T. Koiter’s Elastic Stability of Solids and Structures. Cambridge University Press, 2009.
  • 439. van Erp GM, Menken CM. Initial post-buckling analysis with the spline finite-strip method. Computers and Struct. 40(5):1193-1201;1991.
  • 440. Vasiliev VV, Morozov EV. Mechanics and Analysis of Composite Materials. Elsevier Science Ltd, Oxford 2001.
  • 441. Venkataramaiah KR, Roorda J. Analysis of local plate buckling experimental data. Sixth International Specialty Conference on Cold-Formed Steel Structures (1982: November 16-17; St. Louis, Missouri), Missouri S&T (formerly the University of Missouri - Rolla, 45-74, (1982).
  • 442. Vinson JR, Chou TW. Composite Materials and Their Use in Structures. Applied Science Publishers Ltd, London, 1975.
  • 443. Vinson JR, Sierakowski R: The Behavior of Structures Composed of Composite Materials. Kluwer Academic Publishers New York, 2004.
  • 444. Vlachoutsis S. Shear correction factors for plates and shells. Int. Journal for Numerical Methods in Engineering 33:1537-1552;1992
  • 445. Voyiadjis GZ, Allen DH (pod red.). Damage and Interfacial Debonding in Composites. Elsevier Science B.V. Amsterdam, 1996.
  • 446. Wang ST, Pao HY. Tensional-flexural buckling of locally buckling columns. Computers and Structures 11:127-136;1980.
  • 447. Wang ST, Yost MI, Tien YL. Lateral buckling of locally buckling using finite element techniques. Computers and Structures 7:469-475;1977.
  • 448. Whitcomb JD. Analysis of instability-related growth of a through-width delamination. NASA TM-86301; 1984.
  • 449. White SR. Mixed-mode interlaminar fracture of graphite/epoxy. Washington University; 1987.
  • 450. Whitney JM, Pagano NJ. Shear deformation in heterogeneous anisotropic plates. Journal of Applied Mechanics, Trans. ASME 37:1031-1036;1970.
  • 451. Whitney JM. Structural Analysis of Laminated Anisotropic Plates. Technomic Publishing Co. Inc., Lancaster, PA, 1987.
  • 452. Wilczyński AP. Polimerowe kompozyty włókniste. WNT W-wa 1996.
  • 453. Williams JG, Stein M. Buckling Behavior and Structural Efficiency of Open-Section Stiffened Composite Compression Panels. AIAA Journal 14(11):1618-1626; 1976.
  • 454. Wisnom MR, Hill GFJ, Jones MI. Through thickness failure prediction of composite structural elements. In: Proceedings of the 13th international conference on composite materials, Beijing, China. Paper no. 1623; 2001.
  • 455. Woźniak C. (red.): Mechanika techniczna - mechanika sprężysta płyt i powłok. Tom VIII. PWN Warszawa,2001.
  • 456. Xie D, Biggers SB. Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elem Anal Des 42(11):977-84; 2006.
  • 457. Xie D, Waas AM. Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng Fract Mech 73(13):1783-96;2006.
  • 458. Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397-434;1994.
  • 459. Yamada SE, Sun CT. Analysis of laminate strength and its distribution. J Compos Mater 12:275-84;1978.
  • 460. Yan XQ, Du SY, Wang DUO. An engineering method of determining the delamination fracture toughness of composite laminates. Eng Fract Mech 39(4):623-7; 1991.
  • 461. Yan YH, Park SH. An extended finite element method for modeling near-interfacial crack propagation in a layered structure. Int J Solids Struct 45(17):4756-65; 2008.
  • 462. Ye J., Zhang B., Qi H.: Cost estimates to guide manufacturing of composite waved beam, Materials and Design 30, p. 452-458, 2009.
  • 463. Zaraś J., Królak M., Kotełko M.: Metody doświadczalne wyznaczania obciążeń krytycznych i analizy zachowania się elementów konstrukcji w stanie zakrytycznym. X Krajowa Konferencja Wytrzymałości Materiałów i Badania Materiałów, Kudowa- Zdrój 20-22 wrzesień, 2006 (wersja elektroniczna).
  • 464. Zhang X. Impact damage in composite aircraft structures - experimental testing and numerical simulation. J Aerospace Eng 212(4):245-59;1998.
  • 465. Zhang YX, Yang CH. Recent developments in finite element analysis for laminated composite plates. Compos Struct 88(1):147-57:2009.
  • 466. Zhu H, Sankar BV, Marrey RV. Evaluation of failure criteria for fiber composites using finite element micromechanics. J Compos Mater 32(8):766-82;1998.
  • 467. Zureick A, Nettles AT (pod red.). Composite Materials: Testing, Design, and Acceptance Criteria. ASTM Stock Number: STPI416, 2002. 468. http://www.vallen.de
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2462568-8f9f-4ad4-9207-ba9de1d1997d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.