Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Due to the physicochemical properties of austenitic stainless steels, their welding may result in significant joint distortions and adverse microstructural changes, leading to the formation of unacceptable welding imperfections. This study investigates three single-pass fillet welding techniques employing the Tungsten Inert Gas (TIG) process (141) for joining AISI 304L austenitic stainless steel sheets. It was found that the use of lower heat input value does not cause discoloration of the weld. Moreover, it was observed that reducing the parameters causes the vertical sheet metal to deflect by about 0.333° in the direction opposite to the weld. The highest heat input value caused a deflection of 4.833° towards the weld. Increasing the parameters also deflected the incoming sheet metal towards the weld, but the angle was smaller i.e. 2.167°. An inadequate ferrite content was observed in the specimen welded under the lowest parameter settings. Macroscopic examination revealed no significant welding imperfections. Microscopic analysis showed a microstructure characteristic of the materials used. The width of the heat-affected zone varied with the applied parameters, increasing with higher heat input. The study demonstrated that parameter selection significantly influences the properties of the resulting joint. In developing the welding procedure for AISI 304L austenitic stainless steel, particular emphasis should be placed on controlling heat input, as it is the primary factor determining both the joint properties and the magnitude of welding distortions.
Wydawca
Rocznik
Tom
Strony
92--104
Opis fizyczny
Bibligr. 54poz., fig., tab.
Twórcy
autor
- Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
autor
- Eaton Truck Components Sp. z o.o., 30 Stycznia 55, 83-110, Tczew, Poland
autor
- Institute of Manufacturing and Materials Technology, Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, Gabriela Narutowicza Street 11/12, 80-233 Gdańsk, Poland
Bibliografia
- 1. Simion G., Mirza-Rosca J., Voiculescu I., Scutelnicu E. Corrosion behaviour of medium entropy alloy deposited on low carbon steel substrate by innovative welding method. J Mater Res Technol. 2024; 33: 7136–7146. https://doi.org/10.1016/j.jmrt.2024.11.082.
- 2. Dias P., Lopes J. G., Curado T., Maawad E., Schell N., Kim H. S., Oliveira J. P. In-situ microstructural evolution during tensile loading of CoCrFeMnNi high entropy alloy welded joint probed by high energy synchrotron X-ray diffraction. Sci Technol Weld Join. 2024; 29: 213–219. https://doi.org/10.1177/13621718241259349.
- 3. Hernandez-Flores J. E., Rodriguez-Vargas B. R., Stornelli G., Miranda-Pérez A. F., Di Schino A., Gómez-Casas J., García-Vázquez F. D. J. Influence of the nickel powder addition in 308 stainless steel coatings on H13 tool grade steel. MRS Adv. 2024; 9: 1891–1895. https://doi.org/10.1557/s43580-024-00986-y.
- 4. Mitelea I., Cosma D., Karancsi O., Burcă M., Crăciunescu C. M., Uțu I.-D. Hardfacing of GX-40CrNiSi25-20 cast stainless steel with an austenitic manganese steel electrode. Mater Test. 2024; 66: 2055–2065. https://doi.org/10.1515/mt-2024-0124.
- 5. Świetlicki A., Walczak M., Szala M. Effect of shot peening on corrosion resistance of additively manufactured 17-4PH steel. Mater Sci-Pol. 2022; 40: 135–151. https://doi.org/10.2478/msp-2022-0038.
- 6. Szala M., Łukasik D. Pitting corrosion of the resistance welding joints of stainless steel ventilation grille operated in swimming pool environment. Int J Corros. 2018; 2018: 1–7. https://doi.org/10.1155/2018/9408670.
- 7. Szczucka-Lasota B., Węgrzyn T. Improvement of the mechanical properties of mobile platform stainless construction elements. Transp Probl. 2022; 17: 91–102. https://doi.org/10.20858/tp.2022.17.4.08.
- 8. Surkar H. S., Kumar A., Sirohi S., Pandey S. M., Świerczyńska A., Fydrych D., Pandey C. A dissimilar welded joint of grade 92 steel and AISI 304L steel obtained using IN82 buttering and IN617 filler: Relationship of microstructure and mechanical properties. Arch Civ Mech Eng. 2024; 24: 109. https://doi.org/10.1007/s43452-024-00920-x.
- 9. Pańcikiewicz K., Radomski W. Lack of tightness analysis of concealed welded radiators. Eng Fail Anal. 2020; 114: 104579. https://doi.org/10.1016/j.engfailanal.2020.104579.
- 10. Janiczak R., Pańcikiewicz K. Laser welding of austenitic ferrofluid container for the KRAKsat satellite. Weld World. 2021; 65: 1347–1357. https://doi.org/10.1007/s40194-021-01103-5.
- 11. Szala M., Beer-Lech K., Walczak M. A study on the corrosion of stainless steel floor drains in an indoor swimming pool. Eng Fail Anal. 2017; 77: 31–38. https://doi.org/10.1016/j.engfailanal.2017.02.014.
- 12. Orłowska M., Pańcikiewicz K., Świerczyńska A., Landowski M. Kinetics of intermetallic phase precipitation in manual metal arc welded duplex stainless steels. Materials. 2023; 16: 7628. https://doi.org/10.3390/ma16247628.
- 13. Tuz L., Sokołowski Ł., Stano S. Effect of post-weld heat treatment on microstructure and hardness of laser beam welded 17-4 PH stainless steel. Materials. 2023; 16: 1334. https://doi.org/10.3390/ma16041334.
- 14. Sirohi S., Pandey S. M., Świerczyńska A., Rogalski G., Kumar N., Landowski M., Fydrych D., Pandey C. Microstructure and mechanical properties of combined GTAW and SMAW dissimilar welded joints between Inconel 718 and 304L austenitic stainless steel. Metals. 2022; 13: 14. https://doi.org/10.3390/met13010014.
- 15. Sonar T., Ivanov M., Trofimov E., Liu K., Shcherbakov I., Shaburova N., Samoilovskikh P. A critical review on dissimilar welding of ferritic-martensitic steel and austenitic stainless steel using gas tungsten arc welding process: Weldability issues, processing, and performance characteristics of joints. J Manuf Process. 2025; 133: 811–864. https://doi.org/10.1016/j.jmapro.2024.11.081.
- 16. Łastowska O., Starosta R., Jabłońska M., Kubit A. Exploring the potential application of an innovative post-weld finishing method in butt-welded joints of stainless steels and aluminum alloys. Materials. 2024; 17: 1780. https://doi.org/10.3390/ma17081780.
- 17. Coelho F. G. F., Bracarense A. Q., Lima II E. J., Arias A. R. Desenvolvimento de um modelo para parametrização do processo GMAW-P aplicado à manufatura aditiva por deposição a arco. Soldag Insp. 2024; 29: e2909. https://doi.org/10.1590/0104-9224/si29.09.
- 18. Coelho F. G. F., Marinho L. P., Arias A. R., Silva A. S. Avaliação da influência do magnetismo residual na soldagem GTAW de peças inspecionadas pelo método de partículas magnéticas. Soldag Insp. 2024; 29: e2906. https://doi.org/10.1590/0104-9224/si29.06.
- 19. Toaldo P. H., Ferreira A. S. F., Verastégui R. N., Pukasiewicz A. G. M. Evaluation of the processing parameters influence on the additive manufacturing of VP50IM steel by PCGTAW. Soldag Insp. 2024; 29: e2901. https://doi.org/10.1590/0104-9224/si29.01.
- 20. Górka J., Jamrozik W., Wyględacz B., Kiel-Jamrozik M., Ferreira B. G. Virtual sensor for on-line hardness assessment in TIG welding of Inconel 600 alloy thin plates. Sensors. 2024; 24: 3569. https://doi.org/10.3390/s24113569.
- 21. Alzahrani B., Ahmed M. M. Z., Habba M. I. A., Fouad R. A., Elshaghoul Y. G. Y., Gadallah E. A. TIG welding of EN AW-6082 Al alloy: A comparative analysis of filler rods on microstructural and mechanical performance. J Manuf Mater Process. 2025; 9: 21. https://doi.org/10.3390/jmmp9010021.
- 22. Sun Q., Liu Y., Kang K., Qian X., Liu C., Zhang Q., Sun Q. Morphology, mechanical property, and molten pool dynamics by narrow gap AMF-GTAW with swing filler wire. Sci Technol Weld Join. 2024; 29: 319–327. https://doi.org/10.1177/13621718241273512.
- 23. Abed Al Kareem S. S., Mahdi B. L., Hussein H. K. Impact of TIG welding parameters on the mechanical properties of 6061-T6 aluminum alloy joints. Adv Sci Technol Res J. 2023; 17: 114–129. https://doi.org/10.12913/22998624/171489.
- 24. Karpagaraj A., Siva Shanmugam N., Sankaranarayanasamy K. Mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets. Mater Sci Eng A. 2015; 640: 180–189. https://doi.org/10.1016/j.msea.2015.05.056.
- 25. Abima C. S., Akinlabi S. A., Madushele N., Akinlabi E. T. Comparative study between TIG–MIG hybrid, TIG and MIG welding of 1008 steel joints for enhanced structural integrity. Sci Afr. 2022; 17: e01329. https://doi.org/10.1016/j.sciaf.2022.e01329.
- 26. Echezona N., Akinlabi S. A., Jen T. C., Fatoba O. S., Hassan S., Akinlabi E. T. TIG welding of dissimilar steel: A review. In: Awang M., Emamian S. S., editors. Advances in Materials Science and Engineering. Singapore: Springer; 2021: 1–9. https://doi.org/10.1007/978-981-16-3641-7_1.
- 27. Bensaid N., Benlamnouar M. F., Laib Dit Laksir Y., Saadi T., Badji R. Optimization of tungsten inert gas welding parameters for joining austenitic stainless steel and copper using the Taguchi method. Adv Sci Technol Res J. 2024; 19: 209–219. https://doi.org/10.12913/22998624/195449.
- 28. Bhanu V., Fydrych D., Pandey S. M., Gupta A., Pandey C. Activated tungsten inert gas weld characteristics of P91 joint for advanced ultra-supercritical power plant applications. J Mater Eng Perform. 2024; 33: 12070–12082. https://doi.org/10.1007/s11665-023-08814-4.
- 29. Vora J., Patel V. K., Srinivasan S., Chaudhari R., Pimenov D. Y., Giasin K., Sharma S. Optimization of activated TIG welding parameters using heat transfer search algorithm with experimental validation. Metals. 2021; 11: 981. https://doi.org/10.3390/met11060981.
- 30. He H., Tian X., Yi X., Wang P., Guo Z., Fu A., Zhao W. Optimization of joining parameters in pulsed TIG weld brazing of aluminum and stainless steel using response surface methodology. Coatings. 2024; 14: 1262. https://doi.org/10.3390/coatings14101262.
- 31. Saha S., Paul B. C., Das S. Productivity improvement in butt joining of thick stainless steel plates using activated TIG welding. SN Appl Sci. 2021; 3: 416. https://doi.org/10.1007/s42452-021-04409-7.
- 32. Rao V. A., Deivanathan R. Experimental investigation on TIG welding of stainless steel 310. Procedia Eng. 2014; 97: 902–908. https://doi.org/10.1016/j.proeng.2014.12.365.
- 33. Korinko P. S., Malene S. H. Considerations for the weldability of types 304L and 316L stainless steel. Pract Fail Anal. 2001; 1: 61–68. https://doi.org/10.1007/BF02715336.
- 34. Sun Z., Han H.-Y. Weldability and properties of martensitic/austenitic stainless steel joints. Mater Sci Technol. 1994; 10: 823–829. https://doi.org/10.1179/mst.1994.10.9.823.
- 35. Costanza G., Sili A., Tata M. E. Weldability of austenitic stainless steel by metal arc welding with different shielding gases. Procedia Struct Integr. 2016; 2: 3508–3514. https://doi.org/10.1016/j.prostr.2016.06.437.
- 36. Durgutlu A. Effect of hydrogen in argon shielding gas on TIG welding of austenitic stainless steel. Mater Des. 2004; 25: 19–23. https://doi.org/10.1016/j.matdes.2003.07.004.
- 37. Varbai B. Effects of shielding gas oxygen and nitrogen content during duplex stainless steel welding. Adv Mater Sci. 2024; 24: 111–123. https://doi.org/10.2478/adms-2024-0019.
- 38. Iwaszko J., Strzelecka M. Microstructure and corrosion resistance of AZ91 magnesium alloy after surface remelting. Materials. 2022; 15: 8980. https://doi.org/10.3390/ma15248980.
- 39. Nishad S. K., Dwivedi D. K. Influence of filler metal and arc pulsation on P91 steel weldments produced by activated TIG welding and their stress corrosion cracking behavior. Corros Sci. 2024; 239: 112415. https://doi.org/10.1016/j.corsci.2024.112415.
- 40. Szwajka K., Zielińska-Szwajka J., Trzepieciński T. Influence of shielding gas flow rate on mechanical properties of TIG-welded butt joints of commercially pure grade 1 titanium. Materials. 2024; 17: 1217. https://doi.org/10.3390/ma17051217.
- 41. Mitru A., Semenescu A., Simion G., Scutelnicu E., Voiculescu I. Weldability of copper–304L stainless steel dissimilar joints produced by robotic GTAW. Materials. 2022; 15: 5535. https://doi.org/10.3390/ma15165535.
- 42. Rhode M., Erxleben K., Richter T., Schroepfer D., Mente T., Michael T. Local mechanical properties of dissimilar TIG welded joints of CoCrFeMnNi high entropy alloy and AISI 304 steel. Weld World. 2024; 68: 1563–1573. https://doi.org/10.1007/s40194-024-01718-4.
- 43. Łyczkowska K., Adamiec J., Dolata A. J., Dyzia M., Wieczorek J. Regeneration of aluminum matrix composite reinforced with SiCp and GCsf using GTAW. Materials. 2021; 14: 6410. https://doi.org/10.3390/ma14216410.
- 44. Unnikrishnan R., Idury K. S. N. S., Ismail T. P., Bhadauria A., Shekhawat S. K., Khatirkar R. K., Sapate S. G. Effect of heat input on microstructure, residual stresses and corrosion resistance of 304L stainless steel weldments. Mater Charact. 2014; 93: 10–23. https://doi.org/10.1016/j.matchar.2014.03.013.
- 45. Shankar V., Gill T. P. S., Mannan S. L., Sundaresan S. Solidification cracking in austenitic stainless steel welds. Sadhana. 2003; 28: 359–382. https://doi.org/10.1007/BF02706438.
- 46. Luppo M., Hazarabedian A., Ovejero-García J. Effect of delta ferrite on hydrogen embrittlement of austenitic stainless steel welds. Corros Sci. 1999; 41: 87–103. https://doi.org/10.1016/S0010-938X(98)00083-3.
- 47. García-García V., Reyes-Calderón F., Frasco-García O. D., Alcantar-Modragón N. Mechanical behavior of austenitic stainless steel welds with variable δ-ferrite content in the heat-affected zone. Eng Fail Anal. 2022; 140: 106618. https://doi.org/10.1016/j.engfailanal.2022.106618.
- 48. Akbari Mousavi S. A. A., Miresmaeili R. Experimental and numerical analysis of residual stress distribution in TIG welded 304L stainless steel. J Mater Process Technol. 2008; 208: 383–394. https://doi.org/10.1016/j.jmatprotec.2008.01.015.
- 49. Ramon J., Basu R., Van Voort G., Bolar G. Solidification cracking in austenitic stainless steel welds: A comprehensive microstructural study. Int J Press Vessels Pip. 2021; 194: 104560. https://doi.org/10.1016/j.ijpvp.2021.104560.
- 50. Muthupandi V., Bala Srinivasan P., Seshadri S. K., Sundaresan S. Effect of weld metal chemistry and heat input on structure and properties of duplex stainless steel welds. Mater Sci Eng A. 2003; 358: 9–16. https://doi.org/10.1016/S0921-5093(03)00077-7.
- 51. Kumar S., Shahi A. S. Effect of heat input on microstructure and mechanical properties of GTAW AISI 304 stainless steel joints. Mater Des. 2011; 32: 3617–3623. https://doi.org/10.1016/j.matdes.2011.02.017.
- 52. Ghumman K. Z., Ali S., Khan N. B., Khan M. I., Ali H. T., Ashurov M. Optimization of TIG welding parameters for enhanced mechanical properties of AISI 316L stainless steel welds. Int J Adv Manuf Technol. 2025; 136: 353–365. https://doi.org/10.1007/s00170-024-14277-1.
- 53. Ghumman K. Z., Ali S., Din E. U., Mubashar A., Khan N. B., Ahmed S. W. Effect of TIG welding parameters on surface roughness, microhardness and tensile strength of AISI 316L stainless steel joints using 308L filler. J Mater Res Technol. 2022; 21: 220–236. https://doi.org/10.1016/j.jmrt.2022.09.016.
- 54. Wang J., Li J., Zong R. Influence of TIG welding parameters on microstructure and mechanical properties of 254SMO super austenitic stainless steel thin plates. Mater Today Commun. 2025; 44: 111849. https://doi.org/10.1016/j.mtcomm.2025.111849.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b2459384-0330-48d3-9213-199a6701d3a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.