PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Roller damage detection method based on the measurement of transverse vibrations of the conveyor belt

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents the detection of damage to rollers based on the transverse vibration signal measured on the conveyor belt. A solution was proposed for a wireless measuring device that moves with the conveyor belt along of the route, which records the signal of transverse vibrations of the belt. In the first place, the research was conducted in laboratory conditions, where a roller with prepared damage was used. Subsequently, the process of validating the adopted test procedure under real conditions was performed. The approach allowed to verify the correctness of the adopted technical assumptions of the measuring device and to assess the reliability of the acquired test results. In addition, an LSTM neural network algorithm was proposed to automate the process of detecting anomalies of the recorded diagnostic signal based on designated time series. The adopted detection algorithm has proven itself in both laboratory and in-situ tests.
Słowa kluczowe
Rocznik
Strony
510--521
Opis fizyczny
Bibliogr. 61 poz., rys., tab.
Twórcy
  • Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Department of Mining, Na Grobli 15, 50–421 Wroclaw, Poland
autor
  • Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Department of Mining, Na Grobli 15, 50–421 Wroclaw, Poland
  • Wroclaw University of Science and Technology, Faculty of Geoengineering, Mining and Geology, Department of Mining, Na Grobli 15, 50–421 Wroclaw, Poland
Bibliografia
  • 1. Ambrożkiewicz B, Syta A, Meier N et al. Radial internal clearance analysis in ball bearings. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2021; 23(1): 42-54, https://doi.org/10.17531/ein.2021.1.5.
  • 2. Ardestani S B. Time Series Anomaly Detection and Uncertainty Estimation using LSTM Autoencoders. 2020.
  • 3. Barros-Daza M J, Luxbacher K D, Lattimer B Y, Hodges J L. Mine conveyor belt fire classification. Journal of Fire Sciences 2021; 40(1): 44-69, https://doi.org/10.1177/07349041211056343.
  • 4. Bartelmus W. Condition monitoring of open cast mining machinery. Wroclaw (Poland), Oficyna Wydawnicza Politechniki Wrocławskiej: 2006.
  • 5. Bartelmus W, Sawicki W. Progress in quality assessment of conveyor idlers. XVI IMEKO World Congress, Vienna (Austria), 2000: 6.
  • 6. Bortnowski P, Kawalec W, Król R, Ozdoba M. Identification of conveyor belt tension with the use of its transverse vibration frequencies. Measurement 2022; 190: 110706, https://doi.org/10.1016/j.measurement.2022.110706.
  • 7. Bortnowski P, Nowak-Szpak A, Król R, Ozdoba M. Analysis and Distribution of Conveyor Belt Noise Sources under Laboratory Conditions. Sustainability 2021; 13(4): 2233, https://doi.org/10.3390/su13042233.
  • 8. Carvalho R, Nascimento R, D'angelo T et al. A UAV-Based Framework for Semi-Automated Thermographic Inspection of Belt Conveyors in the Mining Industry. Sensors 2020; 20(8): 2243, https://doi.org/10.3390/s20082243.
  • 9. Dabek P, Szrek J, Zimroz R, Wodecki J. An Automatic Procedure for Overheated Idler Detection in Belt Conveyors Using Fusion of Infrared and RGB Images Acquired during UGV Robot Inspection. Energies 2022; 15(2): 601, https://doi.org/10.3390/en15020601.
  • 10. Delvecchio S, Bonfiglio P, Pompoli F. Vibro-acoustic condition monitoring of Internal Combustion Engines: A critical review of existing techniques. Mechanical Systems and Signal Processing 2018; 99: 661-683, https://doi.org/10.1016/j.ymssp.2017.06.033.
  • 11. Ding H, Zu J W. Effect of one-way clutch on the nonlinear vibration of belt-drive systems with a continuous belt model. Journal of Sound and Vibration 2013; 332(24): 6472-6487, https://doi.org/10.1016/j.jsv.2013.07.009.
  • 12. Dmitrichenko N F, Milanenko A A, Hluhonets A A, Minyaylo K N. A technique for forecasting the durability of rolling bearings and the optimum choice of lubricants under flood-lubrication and oil-starvation conditions. Journal of Friction and Wear 2017; 38(2): 126-131, https://doi.org/10.3103/S1068366617020076.
  • 13. Dybała J, Zimroz R. Rolling bearing diagnosing method based on Empirical Mode Decomposition of machine vibration signal. Applied Acoustics 2014; 77: 195-203, https://doi.org/10.1016/j.apacoust.2013.09.001.
  • 14. Dyer D, Stewart R M. Detection of Rolling Element Bearing Damage by Statistical Vibration Analysis. Journal of Mechanical Design 1978; 100(2): 229-235, https://doi.org/10.1115/1.3453905.
  • 15. Faria H D, Lizarralde F, Costa R R et al. ROSI: a mobile robot for inspection of belt conveyor. IFAC-PapersOnLine 2020; 53(2): 10031-10036, https://doi.org/10.1016/j.ifacol.2020.12.2723.
  • 16. Fedorko G, Molnár V, Živčák J et al. Failure analysis of textile rubber conveyor belt damaged by dynamic wear. Engineering Failure Analysis 2013; 28: 103-114, https://doi.org/10.1016/j.engfailanal.2012.10.014.
  • 17. FLEXCO. What Affects Conveyor Roller Life? Technical Solutions for Belt Conveyor Productivity: Factoring Life, Weight, Power, Noise, and Corrosion into Conveyor Roller Performance and Belt Safety. 2020.
  • 18. Gauthier S, Abarzhi S I, Sreenivasan K R et al. Diagnostics of the Technical State of Bearings of Mining Machines Base Assemblies. IOP Conference Series: Materials Science and Engineering 2017; 253(1): 012012, https://doi.org/10.1088/1757-899X/253/1/012012.
  • 19. Gładysiewicz L. Belt conveyors: theory and calculations (in Polish). Wrocław (Poland), Oficyna Wydawnicza Politechniki Wrocławskiej: 2003.
  • 20. Gładysiewicz L, Kawalec W, Król R. Selection of carry idlers spacing of belt conveyor taking into account random stream of transported bulk material. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2016; 18(1): 32-37, https://doi.org/10.17531/ein.2016.1.5.
  • 21. Gunerkar R S, Jalan A K. Classification of Ball Bearing Faults Using Vibro-Acoustic Sensor Data Fusion. Experimental Techniques 2019; 43(5): 635-643, https://doi.org/10.1007/s40799-019-00324-0.
  • 22. Hu Y, Wang L, Wang X et al. Simultaneous measurement of conveyor belt speed and vibration using an electrostatic sensor array. Conference Record - IEEE Instrumentation and Measurement Technology Conference 2015; 2015-July: 757-761, https://doi.org/10.1109/I2MTC.2015.7151363.
  • 23. Kankar P K, Sharma S C, Harsha S P. Fault diagnosis of rolling element bearing using cyclic autocorrelation and wavelet transform. Neurocomputing 2013; 110: 9-17, https://doi.org/10.1016/j.neucom.2012.11.012.
  • 24. Karpiński R, Krakowski P, Jonak J et al. Estimation of differences in selected indices of vibroacoustic signals between healthy and osteoarthritic patellofemoral joints as a potential non-invasive diagnostic tool. Journal of Physics: Conference Series 2021; 2130(1): 012009, https://doi.org/10.1088/1742-6596/2130/1/012009.
  • 25. Kawalec W, Suchorab N, Konieczna-Fuławka M, Król R. Specific Energy Consumption of a Belt Conveyor System in a Continuous Surface Mine. Energies 2020; 13(19): 5214, https://doi.org/10.3390/en13195214.
  • 26. Kirjanów-Błażej A, Jurdziak L, Burduk R, Błażej R. Forecast of the remaining lifetime of steel cord conveyor belts based on regression methods in damage analysis identified by subsequent DiagBelt scans. Engineering Failure Analysis 2019; 100: 119-126, https://doi.org/10.1016/j.engfailanal.2019.02.039.
  • 27. Klein R, Rudyk E, Masad E, Diagnostics R K. Decision and Fusion for Diagnostics of Mechanical Components. Annual Conference of the PHM Society 2011.
  • 28. Krishnan S. Advanced analysis of biomedical signals. Biomedical Signal Analysis for Connected Healthcare 2021: 157-222, https://doi.org/10.1016/B978-0-12-813086-5.00003-7.
  • 29. Król R, Gladysiewicz L, Kaszuba D, Kisielewski W. New Quality Standards of Testing Idlers for Highly Effective Belt Conveyors. IOP Conference Series: Earth and Environmental Science 2017; 95(4): 042055, https://doi.org/10.1088/1755-1315/95/4/042055.
  • 30. Krynke M, Selejdak J, Borkowski S. Diagnosis and damage of bearings. Manufacturing Technology 2012; 12(2): 140-144, https://doi.org/10.21062/ujep/x.2012/a/1213-2489/MT/12/2/140.
  • 31. Liu X. Prediction of belt conveyor idler performance. TRAIL Research School 2016.
  • 32. Liu X, Pang Y, Lodewijks G, He D. Experimental research on condition monitoring of belt conveyor idlers. Measurement 2018; 127: 277-282, https://doi.org/10.1016/j.measurement.2018.04.066.
  • 33. Liu X, Pei D, Lodewijks G et al. Acoustic signal based fault detection on belt conveyor idlers using machine learning. Advanced Powder Technology 2020; 31(7): 2689-2698, https://doi.org/10.1016/j.apt.2020.04.034.
  • 34. Liu Y, Miao C, Li X et al. Research on the fault analysis method of belt conveyor idlers based on sound and thermal infrared image features. Measurement 2021; 186: 110177, https://doi.org/10.1016/j.measurement.2021.110177.
  • 35. Magar S, Narhare T, Gaikwad A, Kapade N. A Review on Improvement of Hydrodynamic Journal Bearing by using Bio-Lubricant. International Journal for Research in Applied Science & Engineering Technology 2021; 9(VI): 1052-1055, https://doi.org/10.22214/ijraset.2021.35162.
  • 36. Miskovic Z, Mitrovic R, Stamenic Z et al. The development and application of the new methodology for conveyor idlers fits testing. Procedia Structural Integrity 2018; 13: 2143-2151, https://doi.org/10.1016/j.prostr.2018.12.150.
  • 37. Morales A S, Aqueveque P, Henriquez J A et al. A technology review of idler condition based monitoring systems for critical overland conveyors in open-pit mining applications. IEEE Xplore 2017: 1-8, https://doi.org/10.1109/IAS.2017.8101839.
  • 38. Nowakowski T, Komorski P. Diagnostics of the drive shaft bearing based on vibrations in the high-frequency range as a part of the vehicle's self-diagnostic system. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2022; 24(1): 70-7, https://doi.org/10.17531/ein.2022.1.9.
  • 39. Olchówka D, Rzeszowska A, Jurdziak L, Błażej R. Statistical Analysis and Neural Network in Detecting Steel Cord Failures in Conveyor Belts. Energies 2021; 14(11): 3081, https://doi.org/10.3390/en14113081.
  • 40. Pariaman H, Luciana G M, Wisyaldin M K, Hisjam M. Anomaly Detection Using LSTM-Autoencoder to Predict Coal Pulverizer Condition on Coal-Fired Power Plant. EVERGREEN Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy 2021; 9(1): 89-97, https://doi.org/10.5109/4372264.
  • 41. Peruń G, Opasiak T. Assessment of technical state of the belt conveyor rollers with use vibroacoustics methods - preliminary studies. Diagnostyka 2016; 17(1): 75-80.
  • 42. Pihnastyi O, Khodusov V, Kozhevnikov G, Bondarenko T. Analysis of Dynamic Mechanic Belt Stresses of the Magistral Conveyor. Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH: 2021: 186-195, https://doi.org/10.1007/978-3-030-68014-5_19.
  • 43. Pytlik A, Trela K. Research on tightness loss of belt conveyor's idlers and its impact on the temperature increase of the bearing assemblies. Journal of Sustainable Mining 2016; 15(2): 57-65, https://doi.org/10.1016/j.jsm.2016.07.001.
  • 44. Qin Z, Chen L, Bao X. Wavelet denoising method for improving detection performance of distributed vibration sensor. IEEE Photonics Technology Letters 2012; 24(7): 542-544, https://doi.org/10.1109/LPT.2011.2182643.
  • 45. Stanik Z. Vibro-acoustic Diagnostics of Rolling Bearings in Vessels. Transactions on Maritime Science 2014; 03(02): 111-118, https://doi.org/10.7225/toms.v03.n02.002.
  • 46. Szrek J, Wodecki J, Błazej R, Zimroz R. An Inspection Robot for Belt Conveyor Maintenance in Underground Mine-Infrared Thermography for Overheated Idlers Detection. Applied Sciences 2020; 10(14): 4984, https://doi.org/10.3390/app10144984.
  • 47. Szurgacz D, Zhironkin S, Vöth S et al. Thermal Imaging Study to Determine the Operational Condition of a Conveyor Belt Drive System Structure. Energies 2021; 14(11): 3258, https://doi.org/10.3390/en14113258.
  • 48. Ursel T, Olinski M. Estimation of objects instantaneous displacement using inertial sensors (in Polish). Interdisciplinary Journal of Engineering Sciences 2019; VII(1): 46-52.
  • 49. Vasić M, Stojanović B, Blagojević M. Failure analysis of idler roller bearings in belt conveyors. Engineering Failure Analysis 2020; 117: 104898, https://doi.org/10.1016/j.engfailanal.2020.104898.
  • 50. Vos K, Peng Z, Jenkins C et al. Vibration-based anomaly detection using LSTM/SVM approaches. Mechanical Systems and Signal Processing 2022; 169: 108752, https://doi.org/10.1016/j.ymssp.2021.108752.
  • 51. Wei Y, Wu W, Liu T, Sun Y. Study of coal mine belt conveyor state on-line monitoring system of based on DTS. Fourth Asia Pacific Optical Sensors Conference 2013; 8924: 89242I, https://doi.org/10.1117/12.2034277.
  • 52. Wodecki J, Michalak A, Zimroz R. Local damage detection based on vibration data analysis in the presence of Gaussian and heavy-tailed impulsive noise. Measurement 2021; 169: 108400, https://doi.org/10.1016/j.measurement.2020.108400.
  • 53. Wodecki J, Zdunek R, Wyłomańska A, Zimroz R. Local fault detectionof rolling element bearing components by spectrogram clustering with Semi-Binary NMF. Diagnostyka 2017; 18(1): 3-8.
  • 54. Zak G, Obuchowski J, Wylomanska A, Zimroz R. Novel 2D representation of vibration for local damage detection. Mining Science 2014; 21: 105-113.
  • 55. Zhao L, Lin Y. Typical Failure Analysis and Processing of Belt Conveyor. Procedia Engineering 2011; 26: 942-946, https://doi.org/10.1016/j.proeng.2011.11.2260.
  • 56. Zimroz P, Shiri H, Wodecki J. Analysis of the vibro-acoustic data from test rig -comparison of acoustic and vibrational methods. IOP Conference Series: Earth and Environmental Science 2021, https://doi.org/10.1088/1755-1315/942/1/012017.
  • 57. Zimroz R, Król R. Failure analysis of belt conveyor systems for condition monitoring purposes. Mining Science 2009; 128(36): 255-270.
  • 58. Wavelet signal denoising - MATLAB wdenoise. [https://www.mathworks.com/help/wavelet/ref/wdenoise.html].
  • 59. 1-D median filtering - MATLAB medfilt1. [https://www.mathworks.com/help/signal/ref/medfilt1.html#description].
  • 60. Butterworth filter design - MATLAB butter. [https://www.mathworks.com/help/signal/ref/butter.html].
  • 61. Condition Monitoring and Prognostics Using Vibration Signals - MATLAB & Simulink. [https://www.mathworks.com/help/predmaint/ug/condition-monitoring-and-prognostics-using-vibration-signals.html].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b240f8af-dd28-4a43-bc35-b057c3ed500c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.